245 resultados para 120402 Engineering Design Knowledge


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The process of structural health monitoring (SHM) involves monitoring a structure over a period of time using appropriate sensors, extracting damage sensitive features from the measurements made by the sensors and analysing these features to determine the current state of the structure. Various techniques are available for structural health monitoring of structures and acoustic emission (AE) is one technique that is finding an increasing use. Acoustic emission waves are the stress waves generated by the mechanical deformation of materials. AE waves produced inside a structure can be recorded by means of sensors attached on the surface. Analysis of these recorded signals can locate and assess the extent of damage. This paper describes preliminary studies on the application of AE technique for health monitoring of bridge structures. Crack initiation or structural damage will result in wave propagation in solid and this can take place in various forms. Propagation of these waves is likely to be affected by the dimensions, surface properties and shape of the specimen. This, in turn, will affect source localization. Various laboratory test results will be presented on source localization, using pencil lead break tests. The results from the tests can be expected to aid in enhancement of knowledge of acoustic emission process and development of effective bridge structure diagnostics system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding users' capabilities, needs and expectations is key to the domain of Inclusive Design. Much of the work in the field could be informed and further strengthened by clear, valid and representative data covering the full range of people's capabilities. This article reviews existing data sets and identifies the challenges inherent in measuring capability in a manner that is informative for work in Inclusive Design. The need for a design-relevant capability data set is identified and consideration is given to a variety of capability construct operationalisation issues including questions associated with self-report and performance measures, sampling and the appropriate granularity of measures. The need for further experimental work is identified and a programme of research designed to culminate in the design of a valid and reliable capability survey is described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The broad definition of sustainable development at the early stage of its introduction has caused confusion and hesitation among local authorities and planning professionals. The main difficulties are experience in employing loosely-defined principles of sustainable development in setting policies and goals. The question of how this theory/rhetoric-practice gap could be filled will be the theme of this study. One of the widely employed sustainability accounting approaches by governmental organisations, triple bottom line, and applicability of this approach to sustainable urban development policies will be examined. When incorporating triple bottom line considerations with the environmental impact assessment techniques, the framework of GIS-based decision support system that helps decision-makers in selecting policy option according to the economic, environmental and social impacts will be introduced. In order to embrace sustainable urban development policy considerations, the relationship between urban form, travel pattern and socio-economic attributes should be clarified. This clarification associated with other input decision support systems will picture the holistic state of the urban settings in terms of sustainability. In this study, grid-based indexing methodology will be employed to visualise the degree of compatibility of selected scenarios with the designated sustainable urban future. In addition, this tool will provide valuable knowledge about the spatial dimension of the sustainable development. It will also give fine details about the possible impacts of urban development proposals by employing disaggregated spatial data analysis (e.g. land-use, transportation, urban services, population density, pollution, etc.). The visualisation capacity of this tool will help decision makers and other stakeholders compare and select alternative of future urban developments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water environments are greatly valued in urban areas as ecological and aesthetic assets. However, it is the water environment that is most adversely affected by urbanisation. Urban land use coupled with anthropogenic activities alters the stream flow regime and degrade water quality with urban stormwater being a significant source of pollutants. Unfortunately, urban water pollution is difficult to evaluate in terms of conventional monetary measures. True costs extend beyond immediate human or the physical boundaries of the urban area and affect the function of surrounding ecosystems. Current approaches for handling stormwater pollution and water quality issues in urban landscapes are limited as these are primarily focused on ‘end-of-pipe’ solutions. The approaches are commonly based either on, insufficient design knowledge, faulty value judgements or inadequate consideration of full life cycle costs. It is in this context that the adoption of a triple bottom line approach is advocated to safeguard urban water quality. The problem of degradation of urban water environments can only be remedied through innovative planning, water sensitive engineering design and the foresight to implement sustainable practices. Sustainable urban landscapes must be designed to match the triple bottom line needs of the community, starting with ecosystem services first such as the water cycle, then addressing the social and immediate ecosystem health needs, and finally the economic performance of the catchment. This calls for a cultural change towards urban water resources rather than the current piecemeal and single issue focus approach. This paper discusses the challenges in safeguarding urban water environments and the limitations of current approaches. It then explores the opportunities offered by integrating innovative planning practices with water engineering concepts into a single cohesive framework to protect valuable urban ecosystem assets. Finally, a series of recommendations are proposed for protecting urban water resources within the context of a triple bottom line approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The quality of stormwater runoff from ports is significant as it can be an important source of pollution to the marine environment. This is also a significant issue for the Port of Brisbane as it is located in an area of high environmental values. Therefore, it is imperative to develop an in-depth understanding of stormwater runoff quality to ensure that appropriate strategies are in place for quality improvement. ---------------- The Port currently has a network of stormwater sample collection points where event based samples together with grab samples are tested for a range of water quality parameters. Whilst this information provides a ‘snapshot’ of the pollutants being washed from the catchment/s, it does not allow for a quantifiable assessment of total contaminant loads being discharged to the waters of Moreton Bay. It also does not represent pollutant build-up and wash-off from the different land uses across a broader range of rainfall events which might be expected. As such, it is difficult to relate stormwater quality to different pollutant sources within the Port environment. ----------------- Consequently, this would make the source tracking of pollutants to receiving waters extremely difficult and in turn the ability to implement appropriate mitigation measures. Also, without this detailed understanding, the efficacy of the various stormwater quality mitigation measures implemented cannot be determined with certainty. --------------- Current knowledge on port stormwater runoff quality Currently, little knowledge exists with regards to the pollutant generation capacity specific to port land uses as these do not necessarily compare well with conventional urban industrial or commercial land use due to the specific nature of port activities such as inter-modal operations and cargo management. Furthermore, traffic characteristics in a port area are different to a conventional urban area. Consequently, as data inputs based on an industrial and commercial land uses for modelling purposes is questionable. ------------------ A comprehensive review of published research failed to locate any investigations undertaken with regards to pollutant build-up and wash-off for port specific land uses. Furthermore, there is very limited information made available by various ports worldwide about the pollution generation potential of their facilities. Published work in this area has essentially focussed on the water quality or environmental values in the receiving waters such as the downstream bay or estuary. ----------------- The Project: The research project is an outcome of the collaborative Partnership between the Port of Brisbane Corporation (POBC) and Queensland University of Technology (QUT). A key feature of this Partnership is the undertaking of ‘cutting edge’ research to strengthen the environmental custodianship of the Port area. This project aims to develop a port specific stormwater quality model to allow informed decision making in relation to stormwater quality improvement in the context of the increased growth of the Port. --------------- Stage 1 of the research project focussed on the assessment of pollutant build-up and wash-off using rainfall simulation from the current Port of Brisbane facilities with the longer-term objective of contributing to the development of ecological risk mitigation strategies for future expansion scenarios. Investigation of complex processes such as pollutant wash-off using naturally occurring rainfall events has inherent difficulties. These can be overcome using simulated rainfall for the investigations. ----------------- The deliverables for Stage 1 included the following: * Pollutant build-up and wash-off profiles for six primary land uses within the Port of Brisbane to be used for water quality model development. * Recommendations with regards to future stormwater quality monitoring and pollution mitigation measures. The outcomes are expected to deliver the following benefits to the Port of Brisbane: * The availability of Port specific pollutant build-up and wash-off data will enable the implementation of customised stormwater pollution mitigation strategies. * The water quality data collected would form the baseline data for a Port specific water quality model for mitigation and predictive purposes. * To be at the cutting-edge in terms of water quality management and environmental best practice in the context of port infrastructure. ---------------- Conclusions: The important conclusions from the study are: * It confirmed that the Port environment is unique in terms of pollutant characteristics and is not comparable to typical urban land uses. * For most pollutant types, the Port land uses exhibited lower pollutant concentrations when compared to typical urban land uses. * The pollutant characteristics varied across the different land uses and were not consistent in terms of the land use. Hence, the implementation of stereotypical structural water quality improvement devices could be of limited value. * The <150m particle size range was predominant in suspended solids for pollutant build-up as well as wash-off. Therefore, if suspended solids are targeted as the surrogate parameter for water quality improvement, this specific particle size range needs to be removed. ------------------- Recommendations: Based on the study results the following preliminary recommendations are made: * Due to the appreciable variation in pollutant characteristics for different port land uses, any water quality monitoring stations should preferably be located such that source areas can be easily identified. * The study results having identified significant pollutants for the different land uses should enable the development of a more customised water quality monitoring and testing regime targeting the critical pollutants. * A ‘one size fits all’ approach may not be appropriate for the different port land uses due to the varying pollutant characteristics. As such, pollution mitigation will need to be specifically tailored to suit the specific land use. * Any structural measures implemented for pollution mitigation to be effective should have the capability to remove suspended solids of size <150m. * Based on the results presented and the particularly the fact that the Port land uses cannot be compared to conventional urban land uses in relation to pollutant generation, consideration should be given to the development of a port specific water quality model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The quality of stormwater runoff from ports is significant as it can be an important source of pollution to the marine environment. This is also a significant issue for the Port of Brisbane as it is located in an area of high environmental values. Therefore, it is imperative to develop an in-depth understanding of stormwater runoff quality to ensure that appropriate strategies are in place for quality improvement, where necessary. To this end, the Port of Brisbane Corporation aimed to develop a port specific stormwater model for the Fisherman Islands facility. The need has to be considered in the context of the proposed future developments of the Port area. ----------------- The Project: The research project is an outcome of the collaborative Partnership between the Port of Brisbane Corporation (POBC) and Queensland University of Technology (QUT). A key feature of this Partnership is that it seeks to undertake research to assist the Port in strengthening the environmental custodianship of the Port area through ‘cutting edge’ research and its translation into practical application. ------------------ The project was separated into two stages. The first stage developed a quantitative understanding of the generation potential of pollutant loads in the existing land uses. This knowledge was then used as input for the stormwater quality model developed in the subsequent stage. The aim is to expand this model across the yet to be developed port expansion area. This is in order to predict pollutant loads associated with stormwater flows from this area with the longer term objective of contributing to the development of ecological risk mitigation strategies for future expansion scenarios. ----------------- Study approach: Stage 1 of the overall study confirmed that Port land uses are unique in terms of the anthropogenic activities occurring on them. This uniqueness in land use results in distinctive stormwater quality characteristics different to other conventional urban land uses. Therefore, it was not scientifically valid to consider the Port as belonging to a single land use category or to consider as being similar to any typical urban land use. The approach adopted in this study was very different to conventional modelling studies where modelling parameters are developed using calibration. The field investigations undertaken in Stage 1 of the overall study helped to create fundamental knowledge on pollutant build-up and wash-off in different Port land uses. This knowledge was then used in computer modelling so that the specific characteristics of pollutant build-up and wash-off can be replicated. This meant that no calibration processes were involved due to the use of measured parameters for build-up and wash-off. ---------------- Conclusions: Stage 2 of the study was primarily undertaken using the SWMM stormwater quality model. It is a physically based model which replicates natural processes as closely as possible. The time step used and catchment variability considered was adequate to accommodate the temporal and spatial variability of input parameters and the parameters used in the modelling reflect the true nature of rainfall-runoff and pollutant processes to the best of currently available knowledge. In this study, the initial loss values adopted for the impervious surfaces are relatively high compared to values noted in research literature. However, given the scientifically valid approach used for the field investigations, it is appropriate to adopt the initial losses derived from this study for future modelling of Port land uses. The relatively high initial losses will reduce the runoff volume generated as well as the frequency of runoff events significantly. Apart from initial losses, most of the other parameters used in SWMM modelling are generic to most modelling studies. Development of parameters for MUSIC model source nodes was one of the primary objectives of this study. MUSIC, uses the mean and standard deviation of pollutant parameters based on a normal distribution. However, based on the values generated in this study, the variation of Event Mean Concentrations (EMCs) for Port land uses within the given investigation period does not fit a normal distribution. This is possibly due to the fact that only one specific location was considered, namely the Port of Brisbane unlike in the case of the MUSIC model where a range of areas with different geographic and climatic conditions were investigated. Consequently, the assumptions used in MUSIC are not totally applicable for the analysis of water quality in Port land uses. Therefore, in using the parameters included in this report for MUSIC modelling, it is important to note that it may result in under or over estimations of annual pollutant loads. It is recommended that the annual pollutant load values given in the report should be used as a guide to assess the accuracy of the modelling outcomes. A step by step guide for using the knowledge generated from this study for MUSIC modelling is given in Table 4.6. ------------------ Recommendations: The following recommendations are provided to further strengthen the cutting edge nature of the work undertaken: * It is important to further validate the approach recommended for stormwater quality modelling at the Port. Validation will require data collection in relation to rainfall, runoff and water quality from the selected Port land uses. Additionally, the recommended modelling approach could be applied to a soon-to-be-developed area to assess ‘before’ and ‘after’ scenarios. * In the modelling study, TSS was adopted as the surrogate parameter for other pollutants. This approach was based on other urban water quality research undertaken at QUT. The validity of this approach should be further assessed for Port land uses. * The adoption of TSS as a surrogate parameter for other pollutants and the confirmation that the <150 m particle size range was predominant in suspended solids for pollutant wash-off gives rise to a number of important considerations. The ability of the existing structural stormwater mitigation measures to remove the <150 m particle size range need to be assessed. The feasibility of introducing source control measures as opposed to end-of-pipe measures for stormwater quality improvement may also need to be considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper discusses the operating principles and control characteristics of a dynamic voltage restorer (DVR) that protects sensitive but unbalanced and/or distorted loads. The main aim of the DVR is to regulate the voltage at the load terminal irrespective of sag/swell, distortion, or unbalance in the supply voltage. In this paper, the DVR is operated in such a fashion that it does not supply or absorb any active power during the steady-state operation. Hence, a DC capacitor rather than a DC source can supply the voltage source inverter realizing the DVR. The proposed DVR operation is verified through extensive digital computer simulation studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In sustainable development projects, as well as other types of projects, knowledge transfer is important for the organisations managing the project. Nevertheless, knowledge transfer among employees does not happen automatically and it has been found that the lack of social networks and the lack of trust among employees are the major barriers to effective knowledge transfer. Social network analysis has been recognised as a very important tool for improving knowledge transfer in the project environment. Transfer of knowledge is more effective where it depends heavily on social networks and informal dialogue. Based on the theory of social capital, social capital consists of two parts: conduits network and resource exchange network. This research studies the relationships among performance, the resource exchange network (such as the knowledge network) and the relationship network (such as strong ties network, energy network, and trust network) at the individual and project levels. The aim of this chapter is to present an approach to overcoming the lack of social networks and lack of trust to improve knowledge transfer within project-based organisations. This is to be done by identifying the optimum structure of relationship networks and knowledge networks within small and medium projects. The optimal structure of the relationship networks and knowledge networks is measured using two dimensions: intra-project and inter-project. This chapter also outlines an extensive literature review in the areas of social capital, knowledge management and project management, and presents the conceptual model of the research approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Network has emerged from a contempory worldwide phenomenon, culturally manifested as a consequence of globalization and the knowledge economy. It is in this context that the internet revolution has prompted a radical re-ordering of social and institutional relations and the associated structures, processes and places which support them. Within the duality of virtual space and the augmentation of traditional notions of physical place, the organizational structures pose new challenges for the design professions. Technological developments increasingly permit communication anytime and anywhere, and provide the opportunity for both synchronous and asynchronous collaboration. The resultant ecology formed through the network enterprise has resulted in an often convolted and complex world wherein designers are forced to consider the relevance and meaning of this new context. The role of technology and that of space are thus interwined in the relation between the network and the individual workplace. This paper explores a way to inform the interior desgn process for contemporary workplace environments. It reports on both theoretical and practical outcomes through an Australia-wide case study of three collaborating, yet independent business entities. It further suggests the link between workplace design and successful business innovation being realized between partnering organizations in Great Britain. Evidence presented indicates that, for architects and interior designers, the scope of the problem has widened, the depth of knowledge required to provide solutions has increased, and the rules of engagement are required to change. The ontological and epistemological positions adopted in the study enabled the spatial dimensions to be examined from both within and beyond the confines of a traditional design only viewpoint. Importantly it highlights the significance of a trans-disiplinary collaboration in dealing with the multiple layers and complexity of the contemporary social and business world, from both a research and practice perspective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An often neglected but well recognised aspect of successful engineering asset management is the achievement of co-operation and collaboration between various occupational, functional and hierarchical levels present within complex technical environments. Engineering and technical contexts have been well documented for the presence of highly cohesive groups based around around functional or role orientations. However while highly cohesive groups are potentially advantageous they are also often correlated with the emergence of knowledge and information silos based around those same functional or occupational clusters. Improved collaboration and co-operation between groups has been demonstrated to result in a number of positive outcomes at an individual, group and organisational level. Example outcomes include an increased capacity for problem solving, improved responsiveness and adaptation to organisational crises, higher morale and an increased ability to leverage workforce capability. However, an essential challenge for organisations wishing to overcome informational silos is to implement mechanisms that facilitate, encourage and sustain interactions between otherwise disconnected groups. This paper reviews the ability of Web 2.0 technologies and mobile computing devices to facilitate and encourage knowledge sharing between “silo’d” groups. Commonly available tools such as Facebook, Twitter, Blogs, Wiki’s and others will be reviewed in relation to their applicability, functionality and ease-of-use by engineering and technical personnel. The paper also documents three case examples of engineering organisations that have successfully employed Web 2.0 to achieve superior knowledge management. With a number of clear recommendations he paper is an essential starting point for any organization looking at the use of new generation technologies for achieving the significant outcomes associated with knowledge transfer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water Sensitive Urban Design (WSUD) practices such as wetlands, bioretention systems and swales are widely implemented in Australia’s urban areas for the mitigation of stormwater pollution and to enhance its reuse potential. In-depth research undertaken has confirmed that these systems do not always perform according to design expectations due to a diversity of reasons. To deliver anticipated benefits, it is critical that they are designed in conformity with catchment and rainfall characteristics and pollutant processes. This in turn entails an in-depth understanding of key pollutant processes. This paper presents the outcomes of extensive research investigations on pollutant characterisation and stormwater pollutant processes on urban catchment surfaces. Outcomes from the research studies revealed the complexities in physical and chemical characteristics of pollutants originating from urban catchments which are strongly influenced by rainfall and catchment characteristics. Based on the research outcomes, recommendations are provided to enhance stormwater treatment performance and to enhance its reuse potential.