242 resultados para 106-ZZ27
Resumo:
Films found on the windows of residential buildings have been studied. The main aim of the paper was to assess the roles of the films in the accumulation of potentially toxic chemicals in residential buildings. Thus the elemental and polycyclic aromatic hydrocarbon compositions of the surface films from the glass windows of eighteen residential buildings were examined. The presence of sample amounts of inorganic elements (4.0–1.2 × 106 μg m−2) and polycyclic aromatic hydrocarbons in the films (BDL - 620.1 ng m−2) has implications for human exposure and the fate of pollutants in the urban environment. To facilitate the interpretation of the results, data matrices consisting of the chemical composition of the films and the building characteristics were subjected to multivariate data analysis methods, and these revealed that the accumulation of the chemicals was strongly dependent on building characteristics such as the type of glass used for the window, the distance from a major road, age of the building, distance from an industrial activity, number of smokers in the building and frequency of cooking in the buildings. Thus, building characteristics which minimize the accumulation of pollutants on the surface films need to be encouraged.
Resumo:
This letter is in response to the recently published article “Evaluation of two self-referent foot health instruments” by Robert Trevethan (RT) and is in regard to the scale scores he derived when using the quality of life measure, the Foot Health Status Questionnaire [1]. Unfortunately, the journal reviewers and editor did not identify, or address, a fundamental flaw in the methodology of this paper. Subsequently, the inference drawn from this paper could, in all reasonableness, mislead the reader
Resumo:
Event report following a multidisciplinary workshop at the Economic and Social Research Council's Genomics Policy and Research Forum, which took place at the University of Edinburgh on 20 January 2011.
Resumo:
The purpose of this preliminary study was to determine the relevance of the categorization of the load regime data to assess the functional output and usage of the prosthesis of lower limb amputees. The objectives were a) to introduce a categorization of load regime, b) to present some descriptors of each activity, and c) to report the results for a case. The load applied on the osseointegrated fixation of one transfemoral amputee was recorded using a portable kinetic system for 5 hours. The periods of directional locomotion, localized locomotion, and stationary loading occurred 44%, 34%, and 22% of recording time and each accounted for 51%, 38%, and 12% of the duration of the periods of activity, respectively. The absolute maximum force during directional locomotion, localized locomotion, and stationary loading was 19%, 15%, and 8% of the body weight on the anteroposterior axis, 20%, 19%, and 12% on the mediolateral axis, and 121%, 106%, and 99% on the long axis. A total of 2,783 gait cycles were recorded. Approximately 10% more gait cycles and 50% more of the total impulse than conventional analyses were identified. The proposed categorization and apparatus have the potential to complement conventional instruments, particularly for difficult cases.
Resumo:
In this paper, a plasmonic “ac Wheatstone bridge” circuit is proposed and theoretically modeled for the first time. The bridge circuit consists of three metallic nanoparticles, shaped as rectangular prisms, with two nanoparticles acting as parallel arms of a resonant circuit and the third bridging nanoparticle acting as an optical antenna providing an output signal. Polarized light excites localized surface plasmon resonances in the two arms of the circuit, which generate an optical signal dependent on the phase-sensitive excitations of surface plasmons in the antenna. The circuit is analyzed using a plasmonic coupling theory and numerical simulations. The analyses show that the plasmonic circuit is sensitive to phase shifts between the arms of the bridge and has the potential to detect the presence of single molecules.
Massively parallel sequencing and analysis of expressed sequence tags in a successful invasive plant
Resumo:
Background Invasive species pose a significant threat to global economies, agriculture and biodiversity. Despite progress towards understanding the ecological factors associated with plant invasions, limited genomic resources have made it difficult to elucidate the evolutionary and genetic factors responsible for invasiveness. This study presents the first expressed sequence tag (EST) collection for Senecio madagascariensis, a globally invasive plant species. Methods We used pyrosequencing of one normalized and two subtractive libraries, derived from one native and one invasive population, to generate an EST collection. ESTs were assembled into contigs, annotated by BLAST comparison with the NCBI non-redundant protein database and assigned gene ontology (GO) terms from the Plant GO Slim ontologies. Key Results Assembly of the 221 746 sequence reads resulted in 12 442 contigs. Over 50 % (6183) of 12 442 contigs showed significant homology to proteins in the NCBI database, representing approx. 4800 independent transcripts. The molecular transducer GO term was significantly over-represented in the native (South African) subtractive library compared with the invasive (Australian) library. Based on NCBI BLAST hits and literature searches, 40 % of the molecular transducer genes identified in the South African subtractive library are likely to be involved in response to biotic stimuli, such as fungal, bacterial and viral pathogens. Conclusions This EST collection is the first representation of the S. madagascariensis transcriptome and provides an important resource for the discovery of candidate genes associated with plant invasiveness. The over-representation of molecular transducer genes associated with defence responses in the native subtractive library provides preliminary support for aspects of the enemy release and evolution of increased competitive ability hypotheses in this successful invasive. This study highlights the contribution of next-generation sequencing to better understanding the molecular mechanisms underlying ecological hypotheses that are important in successful plant invasions.
Resumo:
The use of metal stripes for the guiding of plasmons is a well established technique for the infrared regime and has resulted in the development of a myriad of passive optical components and sensing devices. However, the plasmons suffer from large losses around sharp bends, making the compact design of nanoscale sensors and circuits problematic. A compact alternative would be to use evanescent coupling between two sufficiently close stripes, and thus we propose a compact interferometer design using evanescent coupling. The sensitivity of the design is compared with that achieved using a hand-held sensor based on the Kretschmann style surface plasmon resonance technique. Modeling of the new interferometric sensor is performed for various structural parameters using finite-difference time-domain and COMSOL Multiphysics. The physical mechanisms behind the coupling and propagation of plasmons in this structure are explained in terms of the allowed modes in each section of the device.
Resumo:
Axon guidance by molecular gradients plays a crucial role in wiring up the nervous system. However, the mechanisms axons use to detect gradients are largely unknown. We first develop a Bayesian “ideal observer” analysis of gradient detection by axons, based on the hypothesis that a principal constraint on gradient detection is intrinsic receptor binding noise. Second, from this model, we derive an equation predicting how the degree of response of an axon to a gradient should vary with gradient steepness and absolute concentration. Third, we confirm this prediction quantitatively by performing the first systematic experimental analysis of how axonal response varies with both these quantities. These experiments demonstrate a degree of sensitivity much higher than previously reported for any chemotacting system. Together, these results reveal both the quantitative constraints that must be satisfied for effective axonal guidance and the computational principles that may be used by the underlying signal transduction pathways, and allow predictions for the degree of response of axons to gradients in a wide variety of in vivo and in vitro settings.