583 resultados para nano-wall-structure


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bi1.5ZnTa1.5O7 (BZT) has been synthesized using an alkoxide based sol-gel reaction route. The evolution of the phases produced from the alkoxide precursors and their properties have been characterized as function of temperature using a combination of thermogravimetric analysis (TGA) coupled with mass spectrometry (MS), infrared emission spectrometry (IES), X-ray diffraction (XRD), ultraviolet and visible (UV-Vis) spectroscopy, Raman spectroscopy, and N2 adsorption/desorption isotherms. The lowest sintering temperature (600∘C) to obtain phase pure BZT powders with high surface area (14.5m2/g) has been determined from the thermal decomposition and phase analyses.The photocatalytic activity of the BZT powders has been tested for the decolorization of organic azo-dye and found to be photoactive under UV irradiation.The electronic band structure of the BZT has been investigated using density functional theory (DFT) calculations to determine the band gap energy (3.12 eV) and to compare it with experimental band gap (3.02 eV at 800∘C) from optical absorptionmeasurements. An excellent match is obtained for an assumption of Zn cation substitutions at specifically ordered sites in the BZT structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A quantum-spin-Hall (QSH) state was achieved experimentally, albeit at a low critical temperature because of the narrow band gap of the bulk material. Twodimensional topological insulators are critically important for realizing novel topological applications. Using density functional theory (DFT), we demonstrated that hydrogenated GaBi bilayers (HGaBi) form a stable topological insulator with a large nontrivial band gap of 0.320 eV, based on the state-of-the-art hybrid functional method, which is implementable for achieving QSH states at room temperature. The nontrivial topological property of the HGaBi lattice can also be confirmed from the appearance of gapless edge states in the nanoribbon structure. Our results provide a versatile platform for hosting nontrivial topological states usable for important nanoelectronic device applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular materials that are often observed in biological systems exhibit excellent mechanical properties at remarkably low densities. Luffa sponge is one of such materials with a complex interconnecting porous structure. In this paper, we studied the relationship between its structural and mechanical properties at different levels of its hierarchical organization from a single fiber to a segment of whole sponge. The tensile mechanical behaviors of three single fibers were examined by an Instron testing machine and the ultrastructure of a fractured single fiber was observed in a scanning electronic microscope. Moreover, the compressive mechanical behaviors of the foam-like blocks from different locations of the sponge were examined. The difference of the compressive stress-strain responses of four sets of segmental samples were also compared. The result shows that the single fiber is a porous composite material mainly consisting of cellulose fibrils and lignin/hemicellulose matrix, and its Young's modulus and strength are comparable to wood. The mechanical behavior of the block samples from the hoop wall is superior to that from the core part. Furthermore, it shows that the influence of the inner surface on the mechanical property of the segmental sample is stronger than that of the core part; in particular, the former's Young's modulus, strength and strain energy absorbed are about 1.6 times higher. The present work can improve our understanding of the structure-function relationship of the natural material, which may inspire fabrication of new biomimetic foams with desirable mechanical efficiency for further applications in anti-crushing devices and super-light sandwich panels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, a growing amount of attention has been focused on the utility of biosensors for biomedical applications. Combined with nanomaterials and nanostructures, nano-scaled biosensors are installed for biomedical applications, such as pathogenic bacteria monitoring, virus recognition, disease biomarker detection, among others. These nano-biosensors offer a number of advantages and in many respects are ideally suited to biomedical applications, which could be made as extremely flexible devices, allowing biomedical analysis with speediness, excellent selectivity and high sensitivity. This minireview discusses the literature published in the latest years on the advances in biomedical applications of nano-scaled biosensors for disease bio-marking and detection, especially in bio-imaging and the diagnosis of pathological cells and viruses, monitoring pathogenic bacteria, thus providing insight into the future prospects of biosensors in relevant clinical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface effect on the four independent elastic constants of nanohoneycombs is investigated in this paper. The axial deformation of the horizontal cell wall is included, comparing to the Gibson's method, and the contributions of the two components of surface stress (i.e. surface residual stress and surface elasticity) are discussed. The result shows that the regular hexagonal honeycomb is not isotropic but orthotropic. An increase in the cell-wall thickness t leads to an increase in the discrepancy of the Young's moduli in both directions. Furthermore, the surface residual stress dominates the surface effect on the elastic constants when t < 15 nm (or the relative density <0.17), which is in contrast to that the surface elasticity does when t > 15 nm (or the relative density > 0.17) for metal Al. The present structure and theory may be useful in the design of future nanodevices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To compare the differences in the hemodynamic parameters of abdominal aortic aneurysm (AAA) between fluid-structure interaction model (FSIM) and fluid-only model (FM), so as to discuss their application in the research of AAA. Methods: An idealized AAA model was created based on patient-specific AAA data. In FM, the flow, pressure and wall shear stress (WSS) were computed using finite volume method. In FSIM, an Arbitrary Lagrangian-Eulerian algorithm was used to solve the flow in a continuously deforming geometry. The hemodynamic parameters of both models were obtained for discussion. Results: Under the same inlet velocity, there were only two symmetrical vortexes in the AAA dilation area for FSIM. In contrast, four recirculation areas existed in FM; two were main vortexes and the other two were secondary flow, which were located between the main recirculation area and the arterial wall. Six local pressure concentrations occurred in the distal end of AAA and the recirculation area for FM. However, there were only two local pressure concentrations in FSIM. The vortex center of the recirculation area in FSIM was much more close to the distal end of AAA and the area was much larger because of AAA expansion. Four extreme values of WSS existed at the proximal of AAA, the point of boundary layer separation, the point of flow reattachment and the distal end of AAA, respectively, in both FM and FSIM. The maximum wall stress and the largest wall deformation were both located at the proximal and distal end of AAA. Conclusions: The number and center of the recirculation area for both models are different, while the change of vortex is closely associated with the AAA growth. The largest WSS of FSIM is 36% smaller than that of FM. Both the maximum wall stress and largest wall displacement shall increase with the outlet pressure increasing. FSIM needs to be considered for studying the relationship between AAA growth and shear stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Inflammation and biomechanical factors have been associated with the development of vulnerable atherosclerotic plaques. Lipid-lowering therapy has been shown to be effective in stabilizing them by reducing plaque inflammation. Its effect on arterial wall strain, however, remains unknown. The aim of the present study was to investigate the role of high- and low-dose lipid-lowering therapy using an HMG-CoA reductase inhibitor, atorvastatin, on arterial wall strain. Methods and Results: Forty patients with carotid stenosis >40% were successfully followed up during the Atorvastatin Therapy: Effects on Reduction Of Macrophage Activity (ATHEROMA; ISRCTN64894118) Trial. All patients had plaque inflammation as shown by intraplaque accumulation of ultrasmall super paramagnetic particles of iron oxide on magnetic resonance imaging at baseline. Structural analysis was performed and change of strain was compared between high- and low-dose statin at 0 and 12 weeks. There was no significant difference in strain between the 2 groups at baseline (P=0.6). At 12 weeks, the maximum strain was significantly lower in the 80-mg group than in the 10-mg group (0.085±0.033 vs. 0.169±0.084; P=0.001). A significant reduction (26%) of maximum strain was observed in the 80-mg group at 12 weeks (0.018±0.02; P=0.01). Conclusions: Aggressive lipid-lowering therapy is associated with a significant reduction in arterial wall strain. The reduction in biomechanical strain may be associated with reductions in plaque inflammatory burden.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plaque rupture has been considered to be the result of its structural failure. The aim of this study is to suggest a possible link between higher stresses and rupture sites observed from in vivo magnetic resonance imaging (MRI) of transient ischemic attack (TIA) patients, by using stress analysis methods. Three patients, who had recently suffered a TIA, underwent in vivo multi-spectral MR imaging. Based on plaque geometries reconstructed from the post-rupture status, six pre-rupture plaque models were generated for each patient dataset with different reconstructions of rupture sites to bridge the gap of fibrous cap from original MRI images. Stress analysis by fluid structure interaction simulation was performed on the models, followed by analysis of local stress concentration distribution and plaque rupture sites. Furthermore, the sensitivity of stress analysis to the pre-rupture plaque geometry reconstruction was examined. Local stress concentrations were found to be located at the plaque rupture sites for the three subjects studied. In the total of 18 models created, the locations of the stress concentration regions were similar in 17 models in which rupture sites were always associated with high stresses. The local stress concentration region moved from circumferential center to the shoulder region (slightly away from the rupture site) for a case with a thick fibrous cap. Plaque wall stress level in the rupture locations was found to be much higher than the value in non-rupture locations. The good correlation between local stress concentrations and plaque rupture sites, and generally higher plaque wall stress level in rupture locations in the subjects studied could provide indirect evidence for the extreme stress-induced plaque rupture hypothesis. Local stress concentration in the plaque region could be one of the factors contributing to plaque rupture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a new approach for velocity vector imaging and time-resolved measurements of strain rates in the wall of human arteries using MRI and we prove its feasibility on two examples: in vitro on a phantom and in vivo on the carotid artery of a human subject. Results point out the promising potential of this approach for investigating the mechanics of arterial tissues in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Biomechanical stresses play an important role in determining plaque stability. Quantification of these simulated stresses can be potentially used to assess plaque vulnerability and differentiate different patient groups. Methods and Results: 54 asymptomatic and 45 acutely symptomatic patients underwent in vivo multicontrast magnetic resonance imaging (MRI) of the carotid arteries. Plaque geometry used for finite element analysis was derived from in vivo MRI at the sites of maximum and minimum plaque burden. In total, 198 slices were used for the computational simulations. A pre-shrink technique was used to refine the simulation. Maximum principle stress at the vulnerable plaque sites (ie, critical stress) was extracted for the selected slices and a comparison was performed between the 2 groups. Critical stress in the slice with maximum plaque burden is significantly higher in acutely symptomatic patients as compared to asymptomatic patients (median, inter quartile range: 198.0 kPa (119.8-359.0 kPa) vs 138.4 kPa (83.8-242.6 kPa), P=0.04). No significant difference was found in the slice with minimum plaque burden between the 2 groups (196.7 kPa (133.3-282.7 kPa) vs 182.4 kPa (117.2-310.6 kPa), P=0.82). Conclusions: Acutely symptomatic carotid plaques have significantly high biomechanical stresses than asymptomatic plaques. This might be potentially useful for establishing a biomechanical risk stratification criteria based on plaque burden in future studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth rate of abdominal aortic aneurysm (AAA) is thought to be an important indicator of the potential risk of rupture. Wall stress is also thought to be a trigger for its rupture. However, stress change during the expansion of an AAA is unclear. Forty-four patients with AAAs were included in this longitudinal follow-up study. They were assessed by serial abdominal ultrasonography and computerized tomography (CT) scans if a critical size was reached or a rapid expansion occurred. Patient-specific 3-dimensional AAA geometries were reconstructed from the follow-up CT images. Structural analysis was performed to calculate the wall stresses of the AAA models at both baseline and final visit. A non-linear large-strain finite element method was used to compute the wall stress distribution. The average growth rate was 0.66cm/year (range 0-1.32 cm/year). A significantly positive correlation between shoulder tress at baseline and growth rate was found (r=0.342; p=0.02). A higher shoulder stress is associated with a rapidly expanding AAA. Therefore, it may be useful for estimating the growth expansion of AAAs and further risk stratification of patients with AAAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atherosclerotic plaque rupture has been extensively considered as the leading cause of death in western countries. It is believed that high stresses within plaque can be an important factor on triggering the rupture of the plaque. Stress analysis in the coronary and carotid arteries with plaque have been developed by many researchers from 2D to 3-D models, from structure analysis only to the Fluid-Structure Interaction (FSI) models[1].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Increased biomechanical stresses within the abdominal aortic aneurysm (AAA) wall contribute to its rupture. Calcification and intraluminal thrombus can be commonly found in AAAs, but the relationship between calcification/intraluminal thrombus and AAA wall stress is not completely described. Methods: Patient-specific three-dimensional AAA geometries were reconstructed from computed tomographic images of 20 patients. Structural analysis was performed to calculate the wall stresses of the 20 AAA models and their altered models when calcification or intraluminal thrombus was not considered. A nonlinear large-strain finite element method was used to compute the wall stress distribution. The relationships between wall stresses and volumes of calcification and intraluminal thrombus were sought. Results: Maximum stress was not correlated with the percentage of calcification, and was negatively correlated with the percentage of intraluminal thrombus (r = -0.56; P = .011). Exclusion of calcification from analysis led to a significant decrease in maximum stress by a median of 14% (range, 2%-27%; P < .01). When intraluminal thrombus was eliminated, maximum stress increased significantly by a median of 24% (range, 5%-43%; P < .01). Conclusion: The presence of calcification increases AAA peak wall stress, suggesting that calcification decrease the biomechanical stability of AAA. In contrast, intraluminal thrombus reduces the maximum stress in AAA. Calcification and intraluminal thrombus should both be considered in the evaluation of wall stress for risk assessment of AAA rupture.