763 resultados para information criteria
Resumo:
Experts’ views and commentary have been highly respected in every discipline. However, unlike traditional disciplines like medicine, mathematics and engineering, Information System (IS) expertise is difficult to define. This paper attempts to understand the characteristics of IS-expert through a comprehensive literature review of analogous disciplines and then derives a formative research model with three main constructs. Further, this research validates the formative model to identify the characteristics of expertise using data gathered from 220 respondents using a contemporary Information System. Finally this research demonstrates how individuals with different levels of expertise differ in their views in relation to system evaluations.
Resumo:
The somatosensory system plays an important role in balance control and age-related changes to this system have been implicated in falls. Parkinson’s disease (PD) is a chronic and progressive disease of the brain, characterized by postural instability and gait disturbance. Previous research has shown that deficiencies in somatosensory feedback may contribute to the poorer postural control demonstrated by PD individuals. However, few studies have comprehensively explored differences in somatosensory function and postural control between PD participants and healthy older individuals. The soles of the feet contain many cutaneous mechanoreceptors that provide important somatosensory information sources for postural control. Different types of insole devices have been developed to enhance this somatosensory information and improve postural stability, but these devices are often too complex and expensive to integrate into daily life. Textured insoles provide a more passive intervention that may be an inexpensive and accessible means to enhance the somatosensory input from the plantar surface of the feet. However, to date, there has been little work conducted to test the efficacy of enhanced somatosensory input induced by textured insoles in both healthy and PD populations during standing and walking. Therefore, the aims of this thesis were to determine: 1) whether textured insole surfaces can improve postural stability by enhancing somatosensory information in younger and older adults, 2) the differences between healthy older participants and PD participants for measures of physiological function and postural stability during standing and walking, 3) how changes in somatosensory information affect postural stability in both groups during standing and walking; and 4), whether textured insoles can improve postural stability in both groups during standing and walking. To address these aims, Study 1 recruited seven older individuals and ten healthy young controls to investigate the effects of two textured insole surfaces on postural stability while performing standing balance tests on a force plate. Participants were tested under three insole surface conditions: 1) barefoot; 2) standing on a hard textured insole surface; and 3), standing on a soft textured insole surface. Measurements derived from the centre of pressure displacement included the range of anterior-posterior and medial-lateral displacement, path length and the 90% confidence elliptical area (C90 area). Results of study 1 revealed a significant Group*Surface*Insole interaction for the four measures. Both textured insole surfaces reduced postural sway for the older group, especially in the eyes closed condition on the foam surface. However, participants reported that the soft textured insole surface was more comfortable and, hence, the soft textured insoles were adopted for Studies 2 and 3. For Study 2, 20 healthy older adults (controls) and 20 participants with Parkinson’s disease were recruited. Participants were evaluated using a series of physiological assessments that included touch sensitivity, vibratory perception, and pain and temperature threshold detection. Furthermore, nerve function and somatosensory evoked potentials tests were utilized to provide detailed information regarding peripheral nerve function for these participants. Standing balance and walking were assessed on different surfaces using a force plate and the 3D Vicon motion analysis system, respectively. Data derived from the force plate included the range of anterior-posterior and medial-lateral sway, while measures of stride length, stride period, cadence, double support time, stance phase, velocity and stride timing variability were reported for the walking assessment. The results of this study demonstrated that the PD group had decrements in somatosensory function compared to the healthy older control group. For electrodiagnosis, PD participants had poorer nerve function than controls, as evidenced by slower nerve conduction velocities and longer latencies in sural nerve and prolonged latency in the P37 somatosensory evoked potential. Furthermore, the PD group displayed more postural sway in both the anterior-posterior and medial-lateral directions relative to controls and these differences were increased when standing on a foam surface. With respect to the gait assessment, the PD group took shorter strides and had a reduced stride period compared with the control group. Furthermore, the PD group spent more time in the stance phase and had increased cadence and stride timing variability than the controls. Compared with walking on the firm surface, the two groups demonstrated different gait adaptations while walking on the uneven surface. Controls increased their stride length and stride period and decreased their cadence, which resulted in a consistent walking velocity on both surfaces. Conversely, while the PD patients also increased their stride period and decreased their cadence and stance period on the uneven surface, they did not increase their stride length and, hence walked slower on the uneven surface. In the PD group, there was a strong positive association between decreased somatosensory function and decreased clinical balance, as assessed by the Tinetti test. Poorer somatosensory function was also strongly positively correlated with the temporospatial gait parameters, especially shorter stride length. Study 3 evaluated the effects of manipulating the somatosensory information from the plantar surface of the feet using textured insoles in the same populations assessed in Study 2. For this study, participants performed the standing and walking balance tests under three footwear conditions: 1) barefoot; 2) with smooth insoles; and 3), with textured insoles. Standing balance and walking were evaluated using a force plate and a Vicon motion analysis system and the data were analysed in the same way outlined for Study 2. The findings showed that the smooth and textured insoles caused different effects on postural control during both the standing and walking trials. Both insoles decreased medial-lateral sway to the same level on the firm surface. The greatest benefits were observed in the PD group while wearing the textured insole. When standing under a more challenging condition on the foam surface with eyes closed, only the textured insole decreased medial-lateral sway in the PD group. With respect to the gait trials, both insoles increased walking velocity, stride length and stride time and decreased cadence, but these changes were more pronounced for the textured insoles. The effects of the textured insoles were evident under challenging conditions in the PD group and increased walking velocity and stride length, while decreasing cadence. Textured insoles were also effective in reducing the time spent in the double support and stance phases of the gait cycle and did not increase stride timing variability, as was the case for the smooth insoles for the PD group. The results of this study suggest that textured insoles, such as those evaluated in this research, may provide a low-cost means of improving postural stability in high-risk groups, such as people with PD, which may act as an important intervention to prevent falls.
Resumo:
This review examines five books in the Oxford Business English Express Series, including "English for telecoms and information technology" by T. Ricca and M. Duckworth; "English for legal professionals" by A. Frost; "English for the pharmaceutical industry" by M. Buchler, K. Jaehnig, G. Matzig, and T. Weindler; "English for cabin crews" by S. Ellis and L. Lansford; and "English for negotiating" by C. Lafond, S. Vine, and B. Welch.
Resumo:
Traditional analytic models for power system fault diagnosis are usually formulated as an unconstrained 0–1 integer programming problem. The key issue of the models is to seek the fault hypothesis that minimizes the discrepancy between the actual and the expected states of the concerned protective relays and circuit breakers. The temporal information of alarm messages has not been well utilized in these methods, and as a result, the diagnosis results may be not unique and hence indefinite, especially when complicated and multiple faults occur. In order to solve this problem, this paper presents a novel analytic model employing the temporal information of alarm messages along with the concept of related path. The temporal relationship among the actions of protective relays and circuit breakers, and the different protection configurations in a modern power system can be reasonably represented by the developed model, and therefore, the diagnosed results will be more definite under different circumstances of faults. Finally, an actual power system fault was served to verify the proposed method.
Resumo:
Queensland University of Technology (QUT) was one of the first universities in Australia to establish an institutional repository. Launched in November 2003, the repository (QUT ePrints) uses the EPrints open source repository software (from Southampton) and has enjoyed the benefit of an institutional deposit mandate since January 2004. Currently (April 2012), the repository holds over 36,000 records, including 17,909 open access publications with another 2,434 publications embargoed but with mediated access enabled via the ‘Request a copy’ button which is a feature of the EPrints software. At QUT, the repository is managed by the library.QUT ePrints (http://eprints.qut.edu.au) The repository is embedded into a number of other systems at QUT including the staff profile system and the University’s research information system. It has also been integrated into a number of critical processes related to Government reporting and research assessment. Internally, senior research administrators often look to the repository for information to assist with decision-making and planning. While some statistics could be drawn from the advanced search feature and the existing download statistics feature, they were rarely at the level of granularity or aggregation required. Getting the information from the ‘back end’ of the repository was very time-consuming for the Library staff. In 2011, the Library funded a project to enhance the range of statistics which would be available from the public interface of QUT ePrints. The repository team conducted a series of focus groups and individual interviews to identify and prioritise functionality requirements for a new statistics ‘dashboard’. The participants included a mix research administrators, early career researchers and senior researchers. The repository team identified a number of business criteria (eg extensible, support available, skills required etc) and then gave each a weighting. After considering all the known options available, five software packages (IRStats, ePrintsStats, AWStats, BIRT and Google Urchin/Analytics) were thoroughly evaluated against a list of 69 criteria to determine which would be most suitable. The evaluation revealed that IRStats was the best fit for our requirements. It was deemed capable of meeting 21 out of the 31 high priority criteria. Consequently, IRStats was implemented as the basis for QUT ePrints’ new statistics dashboards which were launched in Open Access Week, October 2011. Statistics dashboards are now available at four levels; whole-of-repository level, organisational unit level, individual author level and individual item level. The data available includes, cumulative total deposits, time series deposits, deposits by item type, % fulltexts, % open access, cumulative downloads, time series downloads, downloads by item type, author ranking, paper ranking (by downloads), downloader geographic location, domains, internal v external downloads, citation data (from Scopus and Web of Science), most popular search terms, non-search referring websites. The data is displayed in charts, maps and table format. The new statistics dashboards are a great success. Feedback received from staff and students has been very positive. Individual researchers have said that they have found the information to be very useful when compiling a track record. It is now very easy for senior administrators (including the Deputy Vice Chancellor-Research) to compare the full-text deposit rates (i.e. mandate compliance rates) across organisational units. This has led to increased ‘encouragement’ from Heads of School and Deans in relation to the provision of full-text versions.
Resumo:
- Covers entire research process from start to end - Places particular emphasis on motivational components, modes of inquiry in scholarly conduct, theorizing and planning research - Includes aspects such as publication and ethical challenges This book is designed to introduce doctoral and other higher-degree research students to the process of scientific research in the fields of Information Systems as well as fields of Information Technology, Business Process Management and other related disciplines within the social sciences. It guides research students in their process of learning the life of a researcher. In doing so, it provides an understanding of the essential elements, concepts and challenges of the journey into research studies. It also provides a gateway for the student to inquire deeper about each element covered. Comprehensive and broad but also succinct and compact, the book is focusing on the key principles and challenges for a novice doctoral student.
Resumo:
Acoustic emission (AE) is the phenomenon where stress waves are generated due to rapid release of energy within a material caused by sources such as crack initiation or growth. AE technique involves recording the stress waves by means of sensors and subsequent analysis of the recorded signals to gather information about the nature of the source. Though AE technique is one of the popular non destructive evaluation (NDE) techniques for structural health monitoring of mechanical, aerospace and civil structures; several challenges still exist in successful application of this technique. Presence of spurious noise signals can mask genuine damage‐related AE signals; hence a major challenge identified is finding ways to discriminate signals from different sources. Analysis of parameters of recorded AE signals, comparison of amplitudes of AE wave modes and investigation of uniqueness of recorded AE signals have been mentioned as possible criteria for source differentiation. This paper reviews common approaches currently in use for source discrimination, particularly focusing on structural health monitoring of civil engineering structural components such as beams; and further investigates the applications of some of these methods by analyzing AE data from laboratory tests.
Resumo:
A building information model (BIM) is an electronic repository of structured, three-dimensional data that captures both the physical and dynamic functional characteristics of a facility. In addition to its more traditional function as a tool to aid design and construction, a BIM can be used throughout the life cycle of a facility, functioning as a living database that places resources contained within the building in their spatial and temporal context. Through its comprehension of spatial relationships, a BIM can meaningfully represent and integrate previously isolated control and management systems and processes, and thereby provide a more intuitive interface to users. By placing processes in a spatial context, decision-making can be improved, with positive flow-on effects for security and efficiency. In this article, we systematically analyse the authorization requirements involved in the use of BIMs. We introduce the concept of using a BIM as a graphical tool to support spatial access control configuration and management (including physical access control). We also consider authorization requirements for regulating access to the structured data that exists within a BIM as well as to external systems and data repositories that can be accessed via the BIM interface. With a view to addressing these requirements we present a survey of relevant spatiotemporal access control models, focusing on features applicable to BIMs and highlighting capability gaps. Finally, we present a conceptual authorization framework that utilizes BIMs.
Resumo:
The Australian e-Health Research Centre and Queensland University of Technology recently participated in the TREC 2011 Medical Records Track. This paper reports on our methods, results and experience using a concept-based information retrieval approach. Our concept-based approach is intended to overcome specific challenges we identify in searching medical records. Queries and documents are transformed from their term-based originals into medical concepts as de ned by the SNOMED-CT ontology. Results show our concept-based approach performed above the median in all three performance metrics: bref (+12%), R-prec (+18%) and Prec@10 (+6%).
Resumo:
This study proceeds from a central interest in the importance of systematically evaluating operational large-scale integrated information systems (IS) in organisations. The study is conducted within the IS-Impact Research Track at Queensland University of Technology (QUT). The goal of the IS-Impact Track is, "to develop the most widely employed model for benchmarking information systems in organizations for the joint benefit of both research and practice" (Gable et al, 2009). The track espouses programmatic research having the principles of incrementalism, tenacity, holism and generalisability through replication and extension research strategies. Track efforts have yielded the bicameral IS-Impact measurement model; the ‘impact’ half includes Organisational-Impact and Individual-Impact dimensions; the ‘quality’ half includes System-Quality and Information-Quality dimensions. Akin to Gregor’s (2006) analytic theory, the ISImpact model is conceptualised as a formative, multidimensional index and is defined as "a measure at a point in time, of the stream of net benefits from the IS, to date and anticipated, as perceived by all key-user-groups" (Gable et al., 2008, p: 381). The study adopts the IS-Impact model (Gable, et al., 2008) as its core theory base. Prior work within the IS-Impact track has been consciously constrained to Financial IS for their homogeneity. This study adopts a context-extension strategy (Berthon et al., 2002) with the aim "to further validate and extend the IS-Impact measurement model in a new context - i.e. a different IS - Human Resources (HR)". The overarching research question is: "How can the impacts of large-scale integrated HR applications be effectively and efficiently benchmarked?" This managerial question (Cooper & Emory, 1995) decomposes into two more specific research questions – In the new HR context: (RQ1): "Is the IS-Impact model complete?" (RQ2): "Is the ISImpact model valid as a 1st-order formative, 2nd-order formative multidimensional construct?" The study adhered to the two-phase approach of Gable et al. (2008) to hypothesise and validate a measurement model. The initial ‘exploratory phase’ employed a zero base qualitative approach to re-instantiating the IS-Impact model in the HR context. The subsequent ‘confirmatory phase’ sought to validate the resultant hypothesised measurement model against newly gathered quantitative data. The unit of analysis for the study is the application, ‘ALESCO’, an integrated large-scale HR application implemented at Queensland University of Technology (QUT), a large Australian university (with approximately 40,000 students and 5000 staff). Target respondents of both study phases were ALESCO key-user-groups: strategic users, management users, operational users and technical users, who directly use ALESCO or its outputs. An open-ended, qualitative survey was employed in the exploratory phase, with the objective of exploring the completeness and applicability of the IS-Impact model’s dimensions and measures in the new context, and to conceptualise any resultant model changes to be operationalised in the confirmatory phase. Responses from 134 ALESCO users to the main survey question, "What do you consider have been the impacts of the ALESCO (HR) system in your division/department since its implementation?" were decomposed into 425 ‘impact citations.’ Citation mapping using a deductive (top-down) content analysis approach instantiated all dimensions and measures of the IS-Impact model, evidencing its content validity in the new context. Seeking to probe additional (perhaps negative) impacts; the survey included the additional open question "In your opinion, what can be done better to improve the ALESCO (HR) system?" Responses to this question decomposed into a further 107 citations which in the main did not map to IS-Impact, but rather coalesced around the concept of IS-Support. Deductively drawing from relevant literature, and working inductively from the unmapped citations, the new ‘IS-Support’ construct, including the four formative dimensions (i) training, (ii) documentation, (iii) assistance, and (iv) authorisation (each having reflective measures), was defined as: "a measure at a point in time, of the support, the [HR] information system key-user groups receive to increase their capabilities in utilising the system." Thus, a further goal of the study became validation of the IS-Support construct, suggesting the research question (RQ3): "Is IS-Support valid as a 1st-order reflective, 2nd-order formative multidimensional construct?" With the aim of validating IS-Impact within its nomological net (identification through structural relations), as in prior work, Satisfaction was hypothesised as its immediate consequence. The IS-Support construct having derived from a question intended to probe IS-Impacts, too was hypothesised as antecedent to Satisfaction, thereby suggesting the research question (RQ4): "What is the relative contribution of IS-Impact and IS-Support to Satisfaction?" With the goal of testing the above research questions, IS-Impact, IS-Support and Satisfaction were operationalised in a quantitative survey instrument. Partial least squares (PLS) structural equation modelling employing 221 valid responses largely evidenced the validity of the commencing IS-Impact model in the HR context. ISSupport too was validated as operationalised (including 11 reflective measures of its 4 formative dimensions). IS-Support alone explained 36% of Satisfaction; IS-Impact alone 70%; in combination both explaining 71% with virtually all influence of ISSupport subsumed by IS-Impact. Key study contributions to research include: (1) validation of IS-Impact in the HR context, (2) validation of a newly conceptualised IS-Support construct as important antecedent of Satisfaction, and (3) validation of the redundancy of IS-Support when gauging IS-Impact. The study also makes valuable contributions to practice, the research track and the sponsoring organisation.
Resumo:
The serviceability and safety of bridges are crucial to people’s daily lives and to the national economy. Every effort should be taken to make sure that bridges function safely and properly as any damage or fault during the service life can lead to transport paralysis, catastrophic loss of property or even casualties. Nonetheless, aggressive environmental conditions, ever-increasing and changing traffic loads and aging can all contribute to bridge deterioration. With often constrained budget, it is of significance to identify bridges and bridge elements that should be given higher priority for maintenance, rehabilitation or replacement, and to select optimal strategy. Bridge health prediction is an essential underpinning science to bridge maintenance optimization, since the effectiveness of optimal maintenance decision is largely dependent on the forecasting accuracy of bridge health performance. The current approaches for bridge health prediction can be categorised into two groups: condition ratings based and structural reliability based. A comprehensive literature review has revealed the following limitations of the current modelling approaches: (1) it is not evident in literature to date that any integrated approaches exist for modelling both serviceability and safety aspects so that both performance criteria can be evaluated coherently; (2) complex system modelling approaches have not been successfully applied to bridge deterioration modelling though a bridge is a complex system composed of many inter-related bridge elements; (3) multiple bridge deterioration factors, such as deterioration dependencies among different bridge elements, observed information, maintenance actions and environmental effects have not been considered jointly; (4) the existing approaches are lacking in Bayesian updating ability to incorporate a variety of event information; (5) the assumption of series and/or parallel relationship for bridge level reliability is always held in all structural reliability estimation of bridge systems. To address the deficiencies listed above, this research proposes three novel models based on the Dynamic Object Oriented Bayesian Networks (DOOBNs) approach. Model I aims to address bridge deterioration in serviceability using condition ratings as the health index. The bridge deterioration is represented in a hierarchical relationship, in accordance with the physical structure, so that the contribution of each bridge element to bridge deterioration can be tracked. A discrete-time Markov process is employed to model deterioration of bridge elements over time. In Model II, bridge deterioration in terms of safety is addressed. The structural reliability of bridge systems is estimated from bridge elements to the entire bridge. By means of conditional probability tables (CPTs), not only series-parallel relationship but also complex probabilistic relationship in bridge systems can be effectively modelled. The structural reliability of each bridge element is evaluated from its limit state functions, considering the probability distributions of resistance and applied load. Both Models I and II are designed in three steps: modelling consideration, DOOBN development and parameters estimation. Model III integrates Models I and II to address bridge health performance in both serviceability and safety aspects jointly. The modelling of bridge ratings is modified so that every basic modelling unit denotes one physical bridge element. According to the specific materials used, the integration of condition ratings and structural reliability is implemented through critical failure modes. Three case studies have been conducted to validate the proposed models, respectively. Carefully selected data and knowledge from bridge experts, the National Bridge Inventory (NBI) and existing literature were utilised for model validation. In addition, event information was generated using simulation to demonstrate the Bayesian updating ability of the proposed models. The prediction results of condition ratings and structural reliability were presented and interpreted for basic bridge elements and the whole bridge system. The results obtained from Model II were compared with the ones obtained from traditional structural reliability methods. Overall, the prediction results demonstrate the feasibility of the proposed modelling approach for bridge health prediction and underpin the assertion that the three models can be used separately or integrated and are more effective than the current bridge deterioration modelling approaches. The primary contribution of this work is to enhance the knowledge in the field of bridge health prediction, where more comprehensive health performance in both serviceability and safety aspects are addressed jointly. The proposed models, characterised by probabilistic representation of bridge deterioration in hierarchical ways, demonstrated the effectiveness and pledge of DOOBNs approach to bridge health management. Additionally, the proposed models have significant potential for bridge maintenance optimization. Working together with advanced monitoring and inspection techniques, and a comprehensive bridge inventory, the proposed models can be used by bridge practitioners to achieve increased serviceability and safety as well as maintenance cost effectiveness.
Resumo:
A significant number of patients diagnosed with primary brain tumours report unmet information needs. Using concept mapping methodology, this study aimed to identify strategies for improving information provision, and to describe factors that health professionals understood to influence their provision of information to patients with brain tumours and their families. Concept mapping is a mixed methods approach that uses statistical methods to represent participants’ perceived relationships between elements as conceptual maps. These maps, and results of associated data collection and analyses, are used to extract concepts involved in information provision to these patients. Thirty health professionals working across a range of neuro-oncology roles and settings participated in the concept mapping process. Participants rated a care coordinator as the most important strategy for improving brain tumour care, with psychological support as a whole rated as the most important element of care. Five major themes were identified as facilitating information provision: health professionals’ communication skills, style and attitudes; patients’ needs and preferences; perceptions of patients’ need for protection and initiative; rapport and continuity between patients and health professionals; and the nature of the health care system. Overall, health professionals conceptualised information provision as ‘individualised’, dependent on these interconnected personal and environmental factors.
Resumo:
Advances in information and communication technologies have brought about an information revolution, leading to fundamental changes in the way that information is collected or generated, shared and distributed. The importance of establishing systems in which research findings can be readily made available to and used by other researchers has long been recognized in international scientific collaborations. If the data access principles adopted by international scientific collaborations are to be effectively implemented they must be supported by the national policies and laws in place in the countries in which participating researchers are operating.
Resumo:
This paper engages with debates about whether comprehensive prior specification of criteria and standards is sufficient for informed professional judgement. A preoccupation has emerged with the specificity and explication of criteria intended to regulate judgement. This has resulted in criteria-compliance in the use of defined standards to validate judgements and improve reliability and consistency. Compliance has become a priority, the consequence being the prominence of explicit criteria, to the lack of acknowledgement of the operation of latent and meta-criteria within judgement practice. This paper examines judgement as a process involving three categories of assessment criteria in the context of standards-referenced systems: explicit, latent and meta-criteria. These are understood to be wholly interrelated and interdependent. A conceptualisation of judgement involving the interplay of the three criteria types is presented with an exploration of how they function to focus or alter assessments of quality in judgements of achievement in English and Mathematics.
Resumo:
This study examined the perceptual attunement of relatively skilled individuals to physical properties of striking implements in the sport of cricket. We also sought to assess whether utilising bats of different physical properties influenced performance of a specific striking action: the front foot straight drive. Eleven, skilled male cricketers (mean age = 16.6 ± 0.3 years) from an elite school cricket development programme consented to participate in the study. Whist blindfolded, participants wielded six bats exhibiting different mass and moment of inertia (MOI) characteristics and were asked to identify their three most preferred bats for hitting a ball to a maximum distance by performing a front foot straight drive (a common shot in cricket). Next, participants actually attempted to hit balls projected from a ball machine using each of the six bat configurations to enable kinematic analysis of front foot straight drive performance with each implement. Results revealed that, on first choice, the two bats with the smallest mass and MOI values (1 and 2) were most preferred by almost two-thirds (63.7%) of the participants. Kinematic analysis of movement patterns revealed that bat velocity, step length and bat-ball contact position measures significantly differed between bats. Data revealed how skilled youth cricketers were attuned to the different bat characteristics and harnessed movement system degeneracy to perform this complex interceptive action.