634 resultados para driving simulation
Resumo:
Background Biochemical systems with relatively low numbers of components must be simulated stochastically in order to capture their inherent noise. Although there has recently been considerable work on discrete stochastic solvers, there is still a need for numerical methods that are both fast and accurate. The Bulirsch-Stoer method is an established method for solving ordinary differential equations that possesses both of these qualities. Results In this paper, we present the Stochastic Bulirsch-Stoer method, a new numerical method for simulating discrete chemical reaction systems, inspired by its deterministic counterpart. It is able to achieve an excellent efficiency due to the fact that it is based on an approach with high deterministic order, allowing for larger stepsizes and leading to fast simulations. We compare it to the Euler τ-leap, as well as two more recent τ-leap methods, on a number of example problems, and find that as well as being very accurate, our method is the most robust, in terms of efficiency, of all the methods considered in this paper. The problems it is most suited for are those with increased populations that would be too slow to simulate using Gillespie’s stochastic simulation algorithm. For such problems, it is likely to achieve higher weak order in the moments. Conclusions The Stochastic Bulirsch-Stoer method is a novel stochastic solver that can be used for fast and accurate simulations. Crucially, compared to other similar methods, it better retains its high accuracy when the timesteps are increased. Thus the Stochastic Bulirsch-Stoer method is both computationally efficient and robust. These are key properties for any stochastic numerical method, as they must typically run many thousands of simulations.
Resumo:
The deployment of new emerging technologies, such as cooperative systems, allows the traffic community to foresee relevant improvements in terms of traffic safety and efficiency. Autonomous vehicles are able to share information about the local traffic state in real time, which could result in a better reaction to the mechanism of traffic jam formation. An upstream single-hop radio broadcast network can improve the perception of each cooperative driver within a specific radio range and hence the traffic stability. The impact of vehicle to vehicle cooperation on the onset of traffic congestion is investigated analytically and through simulation. A next generation simulation field dataset is used to calibrate the full velocity difference car-following model, and the MOBIL lane-changing model is implemented. The robustness of the calibration as well as the heterogeneity of the drivers is discussed. Assuming that congestion can be triggered either by the heterogeneity of drivers' behaviours or abnormal lane-changing behaviours, the calibrated car-following model is used to assess the impact of a microscopic cooperative law on egoistic lane-changing behaviours. The cooperative law can help reduce and delay traffic congestion and can have a positive effect on safety indicators.
Resumo:
In order to simulate stiff biochemical reaction systems, an explicit exponential Euler scheme is derived for multidimensional, non-commutative stochastic differential equations with a semilinear drift term. The scheme is of strong order one half and A-stable in mean square. The combination with this and the projection method shows good performance in numerical experiments dealing with an alternative formulation of the chemical Langevin equation for a human ether a-go-go related gene ion channel mode
Resumo:
We investigate the terminating concept of BKZ reduction first introduced by Hanrot et al. [Crypto'11] and make extensive experiments to predict the number of tours necessary to obtain the best possible trade off between reduction time and quality. Then, we improve Buchmann and Lindner's result [Indocrypt'09] to find sub-lattice collision in SWIFFT. We illustrate that further improvement in time is possible through special setting of SWIFFT parameters and also through the combination of different reduction parameters adaptively. Our contribution also include a probabilistic simulation approach top-up deterministic simulation described by Chen and Nguyen [Asiacrypt'11] that can able to predict the Gram-Schmidt norms more accurately for large block sizes.
Resumo:
This paper explores novel driving experiences that make use of gamification and augmented reality in the car. We discuss our design considerations, which are grounded in road safety psychology and video game design theory. We aim to address the tension between safe driving practices and player engagement. Specifically, we propose a holistic, iterative thinking process inspired by game design cognition and share our insights generated through the application of this process. We present preliminary game concepts that blend digital components with physical elements from the driving environment. We further highlight how this design process helped us to iteratively evolve these concepts towards being safer while maintaining fun. These insights and game design cognition itself will be useful to the AutomotiveUI community investigating similar novel driving experiences.
Resumo:
A simulation model (PCPF-B) was developed based on the PCPF-1 model to predict the runoff of pesticides from paddy plots to a drainage canal in a paddy block. The block-scale model now comprises three modules: (1) a module for pesticide application, (2) a module for pesticide behavior in paddy fields, and (3) a module for pesticide concentration in the drainage canal. The PCPF-B model was first evaluated by published data in a single plot and then was applied to predict the concentration of bensulfuron-methyl in one paddy block in the Sakura river basin, Ibaraki, Japan, where a detailed field survey was conducted. The PCPF-B model simulated well the behavior of bensulfuron-methyl in individual paddy plots. It also reflected the runoff pattern of bensulfuron-methyl at the block outlet, although overestimation of bensulfuronmethyl concentrations occurred due to uncertainty in water balance estimation. Application of water management practice such as water-holding period and seepage control also affected the performance of the model. A probabilistic approach may be necessary for a comprehensive risk assessment in large-scale paddy areas.
Resumo:
The fate of two popular antibiotics, oxytetracycline and oxolinic acid, in a fish pond were simulated using a computational model. The VDC model, which is designed based on a model for predicting pesticide fate and transport in paddy fields, was modified to take into account the differences between the pond and the paddies as well as those between the fish and the rice plant behaviors. The pond conditions were set following the typical practice in South East Asia aquaculture. The two antibiotics were administered to the animal in the pond through medicated feed during a period of 5 days as in actual practice. Concentrations of oxytetracycline in pond water were higher than those of oxolinic acid at the beginning of the simulation. Dissipation rate of oxytetracycline is also higher as it is more readily available for degradation in the water. For the long term, oxolinic acid was present at higher concentration than oxytetracycline in pond water as well as pond sediment. The simulated results were expected to be conservative and can be useful for the lower tier assessment of exposure risk of veterinary medicine in aquaculture industry but more data are needed for the complete validation of the model.
Resumo:
Experiments were conducted to determine the fate of bensulfuron-methyl (BSM) and imazosulfuron (IMS) under paddy conditions. Initially, laboratory experiments were conducted and the photolysis half-lives of the two herbicides were found to be much shorter than their hydrolysis half-lives in aqueous solutions. In the aerobic water–soil system, dissipation followed first-order kinetics with water half-lives of 9.1 and 11.0 days and soil half-lives of 12.4 and 18.5 days (first phase) and 35.0 and 44.1 days (second phase) for bensulfuron-methyl and imazosulfuron, respectively. However, the anaerobic soil half-lives were only 12.7 and 9.8 days for BSM and IMS, respectively. The values of K d were determined to be 16.0 and 13.8 for BSM and IMS, respectively. Subsequent field measurements for the two herbicides revealed that dissipation of both herbicides in paddy water involved biphasic first-order kinetics, with the dissipation rates in the first phase being much faster than those in the second phase. The dissipation of bensulfuron-methyl and imazosulfuron in the paddy surface soil were also followed biphasic first-order kinetics. These results were then used as input parameters for the PCPF-1 model to simulate the fate and transport of BSM and IMS in the paddy environment (water and 1-cm surface soil layer). The measured and simulated values agreed well and the mass balance error during the simulation period was −1.2 and 2.8% of applied pesticide, respectively, for BSM and IMS.
Resumo:
BACKGROUND: Monitoring studies revealed high concentrations of pesticides in the drainage canal of paddy fields. It is important to have a way to predict these concentrations in different management scenarios as an assessment tool. A simulation model for predicting the pesticide concentration in a paddy block (PCPF-B) was evaluated and then used to assess the effect of water management practices for controlling pesticide runoff from paddy fields. RESULTS: The PCPF-B model achieved an acceptable performance. The model was applied to a constrained probabilistic approach using the Monte Carlo technique to evaluate the best management practices for reducing runoff of pretilachlor into the canal. The probabilistic model predictions using actual data of pesticide use and hydrological data in the canal showed that the water holding period (WHP) and the excess water storage depth (EWSD) effectively reduced the loss and concentration of pretilachlor from paddy fields to the drainage canal. The WHP also reduced the timespan of pesticide exposure in the drainage canal. CONCLUSIONS: It is recommended that: (1) the WHP be applied for as long as possible, but for at least 7 days, depending on the pesticide and field conditions; (2) an EWSD greater than 2 cm be maintained to store substantial rainfall in order to prevent paddy runoff, especially during the WHP.
Resumo:
Sleepy driving and drink driving are two risky driving behaviours that substantially contribute to road crashes. Several studies demonstrate equivalent levels of impairment from both sleepy and drink driving. Yet, drivers perceive sleepy and drink driving distinctly different, with younger and older drivers engaging in these two risky driving behaviours at different rates. The current study sought to examine the sleepy and drink driving behaviours and perceptions in a sample of 114 younger (17-29 years) and 177 older (30+ years) drivers. Compared to older drivers, younger drivers reported more positive attitudes toward sleepy and drink driving behaviours, as well as more negative views regarding perceived legitimacy of sleepy driving enforcement. Younger drivers were also more likely to report performing sleepy driving behaviours than older drivers. Younger drivers reported greater likelihood to drive while sleepy, lower perceptions of legitimacy for sleepy driving, and more positive attitudes towards sleepy driving when compared to drink driving and the same pattern was found for older drivers as well. Subsequently, the self-reported likelihood of driving while sleepy was greater than drink driving in both age groups. Overall, the results suggest that sleepy driving is not viewed as equally dangerous as drink driving with younger drivers’ perceptions being more lenient than older drivers’ perceptions. It is likely that change is needed regarding the perceptions of dangerousness of sleepy driving with a particular focus on younger drivers seemingly needed.
Resumo:
Driving while sleepy is regarded as a substantial crash risk factor. Reducing the risk of sleep-related crashes predominately rests with the driver’s awareness of experiencing signs that are common when sleepy; such as yawning, frequent eye blinks, and difficulty keeping eyes open. However the relationship between the signs of sleepiness and risky sleepy driving behaviours is largely unknown. The current study sought to examine the relationships between drivers’ experiences of the signs of sleepiness, risky sleepy driving behaviours, and the associations with demographic, work and sleep-related factors. In total 1,608 participants completed a questionnaire administered via a telephone interview that assessed their experiences and behaviours of driving while sleepy. The results revealed a number of demographic, work and sleep-related factors were associated with experiencing signs of sleepiness when driving. Signs of sleepiness were also found to mediate the relationship between continuing to drive while sleepy and having a sleep-related close call event. A subgroup analysis based on age (under 30 and 30 years or older) found younger drivers were more likely to continue to drive when sleepy despite experiencing more signs of sleepiness. The results suggest participants had considerable experience with the signs of sleepiness and driving while sleepy. Actions to be taken from this research include informing the content of driver education campaigns regarding the importance of the signs of sleepiness. Working together to educate all drivers about the dangerousness of driving when experiencing signs of sleepiness is an important road safety outcome.
Resumo:
Young drivers represent approximately 20% of the Omani population, yet account for over one third of crash injuries and fatalities on Oman's roads. Internationally, research has demonstrated that social influences play an important role within young driver safety, however, there is little research examining this within Arab gulf countries. This study sought to explore young driver behaviour using Akers' social learning theory. A self-report survey was conducted by 1319 (72.9% male and 27.1% female) young drivers aged 17-25 years. A hierarchical regression model was used to investigate the contribution of social learning variables (norms and behaviour of significant others, personal attitudes towards risky behaviour, imitation of significant others, beliefs about the rewards and punishments offered by risky behaviour), socio-demographic characteristics (age and gender), driving experience (initial training, time driving and previous driving without supervision) and sensitivity to rewards and punishments upon the self-reported risky driving behaviours of young drivers. It was found that 39.6% of the young drivers reported that they have been involved in at least one crash since the issuance of their driving licence and they were considered ‘at fault’ in 60.7% of these crashes. The hierarchical multiple regression models revealed that socio-demographic characteristics and driving experience alone explained 14.2% of the variance in risky driving behaviour. By introducing social learning factors into the model a further 37.0% of variance was explained. Finally, 7.9% of the variance in risky behaviour could be explained by including individual sensitivity to rewards and punishments. These findings and the implications are discussed.
Resumo:
There is limited research on the driving performance and safety of bioptic drivers and even less regarding the driving skills that are most challenging for those learning to drive with bioptic telescopes. This research consisted of case studies of five trainee bioptic drivers whose driving skills were compared with those of a group of licensed bioptic drivers (n = 23) while they drove along city, suburban, and controlled-access highways in an instrumented dual-brake vehicle. A certified driver rehabilitation specialist was positioned in the front passenger seat to monitor safety and two backseat evaluators independently rated driving using a standardized scoring system. Other aspects of performance were assessed through vehicle instrumentation and video recordings. Results demonstrate that while sign recognition, lane keeping, steering steadiness, gap judgments and speed choices were significantly worse in trainees, some driving behaviors and skills, including pedestrian detection and traffic light recognition were not significantly different to those of the licensed drivers. These data provide useful insights into the skill challenges encountered by a small sample of trainee bioptic drivers which, while not generalizable because of the small sample size, provide valuable insights beyond that of previous studies and can be used as a basis to guide training strategies.
Resumo:
This program of research investigated the factors facilitating drink driving in Indigenous communities in Far North Queensland. Drink driving-related road crashes are a significant health burden for Indigenous people, as they die in road crashes at three times the rate of other Australians and are 30% more likely to be seriously injured. This research provided information to develop and pilot a culturally-specific program, 'Hero to Healing'. The main motivation to drink drive was related to 'kinship pressure; where drivers were pressured by family members to drive after drinking. The underlying responsibility for transporting family members was related to cultural values and involved responding to family needs as a priority. Exposure to older family members drink driving was considered to play a role in normalising the behaviour, leading to imitation into adulthood. The research highlighted the need to treat drink driving as a community issue, rather than an individual phenomenon.