856 resultados para Tireoide - Cancer - Tratamento
Resumo:
We found that procaspase 8 was overexpressed in non-small-cell lung cancers (NSCLCs) compared with matched normal tissues. The caspase 8 inhibitor FLICE-inhibitory protein (FLIP) was also overexpressed in the majority of NSCLCs. Silencing FLIP induced caspase 8 activation and apoptosis in NSCLC cell lines, but not in normal lung cell lines. Apoptosis induced by FLIP silencing was mediated by the TRAIL death receptors DR4 and DR5, but was not dependent on ligation of the receptors by TRAIL. Furthermore, the apoptosis induced by FLIP silencing was dependent on the overexpression of procaspase 8 in NSCLC cells. Moreover, in NSCLC cells, but not in normal cells, FLIP silencing induced co-localization of DR5 and ceramide, and disruption of this co-localization abrogated apoptosis. FLIP silencing supra-additively increased TRAIL-induced apoptosis of NSCLC cells; however, normal lung cells were resistant to TRAIL, even when FLIP was silenced. Importantly, FLIP silencing sensitized NSCLC cells but not normal cells to chemotherapy in vitro, and silencing FLIP in vivo retarded NSCLC xenograft growth and enhanced the anti-tumour effects of cisplatin. Collectively, our results suggest that due to frequent procaspase 8 overexpression, NSCLCs may be particularly sensitive to FLIP-targeted therapies.
Resumo:
Purpose Cancer cells have been shown to be more susceptible to Ran knockdown than normal cells. We now investigate whether Ran is a potential therapeutic target of cancers with frequently found mutations that lead to higher Ras/MEK/ERK [mitogen-activated protein/extracellular signal-regulated kinase (ERK; MEK)] and phosphoinositide 3-kinase (PI3K)/Akt/mTORC1 activities. Experimental Design Apoptosis was measured by flow cytometry [propidium iodide (PI) and Annexin V staining] and MTT assay in cancer cells grown under different conditions after knockdown of Ran. The correlations between Ran expression and patient survival were examined in breast and lung cancers. Results Cancer cells with their PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways inhibited are less susceptible to Ran silencing-induced apoptosis. K-Ras-mutated, c-Met-amplified, and Pten-deleted cancer cells are also more susceptible to Ran silencing-induced apoptosis than their wild-type counterparts and this effect is reduced by inhibitors of the PI3K/Akt/mTORC1 and MEK/ERK pathways. Overexpression of Ran in clinical specimens is significantly associated with poor patient outcome in both breast and lung cancers. This association is dramatically enhanced in cancers with increased c-Met or osteopontin expression, or with oncogenic mutations of K-Ras or PIK3CA, all of which are mutations that potentially correlate with activation of the PI3K/Akt/mTORC1 and/or Ras/MEK/ERK pathways. Silencing Ran also results in dysregulation of nucleocytoplasmic transport of transcription factors and downregulation of Mcl-1 expression, at the transcriptional level, which are reversed by inhibitors of the PI3K/Akt/mTORC1 and MEK/ERK pathways. Conclusion Ran is a potential therapeutic target for treatment of cancers with mutations/changes of expression in protooncogenes that lead to activation of the PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways. ©2011 AACR.
Resumo:
Background Ras-related nuclear protein (Ran) is required for cancer cell survival in vitro and human cancer progression, but the molecular mechanisms are largely unknown. Methods We investigated the effect of the v-myc myelocytomatosis viral oncogene homolog (Myc) on Ran expression by Western blot, chromatin immunoprecipitation, and luciferase reporter assays and the effects of Myc and Ran expression in cancer cells by soft-agar, cell adhesion, and invasion assays. The correlation between Myc and Ran and the association with patient survival were investigated in 14 independent patient cohorts (n = 2430) and analyzed with Spearman's rank correlation and Kaplan-Meier plots coupled with Wilcoxon-Gehan tests, respectively. All statistical tests were two-sided. Results Myc binds to the upstream sequence of Ran and transactivates Ran promoter activity. Overexpression of Myc upregulates Ran expression, whereas knockdown of Myc downregulates Ran expression. Myc or Ran overexpression in breast cancer cells is associated with cancer progression and metastasis. Knockdown of Ran reverses the effect induced by Myc overexpression in breast cancer cells. In clinical data, a positive association between Myc and Ran expression was revealed in 288 breast cancer and 102 lung cancer specimens. Moreover, Ran expression levels differentiate better or poorer survival in Myc overexpressing breast (χ2 = 24.1; relative risk [RR] = 9.1, 95% confidence interval [CI] = 3.3 to 24.7, P <. 001) and lung (χ2 = 6.04; RR = 2.8, 95% CI = 1.2 to 6.3; P =. 01) cancer cohorts. Conclusions Our results suggest that Ran is required for and is a potential therapeutic target of Myc-driven cancer progression in both breast and lung cancers. © 2013 The Author.
Resumo:
BACKGROUND: Outdoor workers are at high risk of harmful ultraviolet radiation exposure and are identified as an at risk group for the development of skin cancer. This systematic evidence based review provides an update to a previous review published in 2007 about interventions for the prevention of skin cancer in outdoor workers. RESULTS: This review includes interventions published between 2007-2012 and presents findings about sun protection behaviours and/or objective measures of skin cancer risk. Six papers met inclusion criteria and were included in the review. Large studies with extended follow-up times demonstrated the efficacy of educational and multi-component interventions to increase sun protection, with some higher use of personal protective equipment such as sunscreen. However, there is less evidence for the effectiveness of policy or specific intervention components. CONCLUSIONS: Further research aimed at improving overall attitudes towards sun protection in outdoor workers is needed to provide an overarching framework.
Resumo:
Background The body of evidence related to breast-cancer-related lymphoedema incidence and risk factors has substantially grown and improved in quality over the past decade. We assessed the incidence of unilateral arm lymphoedema after breast cancer and explored the evidence available for lymphoedema risk factors. Methods We searched Academic Search Elite, Cumulative Index to Nursing and Allied Health, Cochrane Central Register of Controlled Trials (clinical trials), and Medline for research articles that assessed the incidence or prevalence of, or risk factors for, arm lymphoedema after breast cancer, published between January 1, 2000, and June 30, 2012. We extracted incidence data and calculated corresponding exact binomial 95% CIs. We used random effects models to calculate a pooled overall estimate of lymphoedema incidence, with subgroup analyses to assess the effect of different study designs, countries of study origin, diagnostic methods, time since diagnosis, and extent of axillary surgery. We assessed risk factors and collated them into four levels of evidence, depending on consistency of findings and quality and quantity of studies contributing to findings. Findings 72 studies met the inclusion criteria for the assessment of lymphoedema incidence, giving a pooled estimate of 16·6% (95% CI 13·6–20·2). Our estimate was 21·4% (14·9–29·8) when restricted to data from prospective cohort studies (30 studies). The incidence of arm lymphoedema seemed to increase up to 2 years after diagnosis or surgery of breast cancer (24 studies with time since diagnosis or surgery of 12 to <24 months; 18·9%, 14·2–24·7), was highest when assessed by more than one diagnostic method (nine studies; 28·2%, 11·8–53·5), and was about four times higher in women who had an axillary-lymph-node dissection (18 studies; 19·9%, 13·5–28·2) than it was in those who had sentinel-node biopsy (18 studies; 5·6%, 6·1–7·9). 29 studies met the inclusion criteria for the assessment of risk factors. Risk factors that had a strong level of evidence were extensive surgery (ie, axillary-lymph-node dissection, greater number of lymph nodes dissected, mastectomy) and being overweight or obese. Interpretation Our findings suggest that more than one in five women who survive breast cancer will develop arm lymphoedema. A clear need exists for improved understanding of contributing risk factors, as well as of prevention and management strategies to reduce the individual and public health burden of this disabling and distressing disorder.
Resumo:
Lycopene is a phytochemical that belongs to a group of pigments known as carotenoids. It is red, lipophilic and naturally occurring in many fruits and vegetables, with tomatoes and tomato-based products containing the highest concentrations of bioavailable lycopene. Several epidemiological studies have linked increased lycopene consumption with decreased prostate cancer risk. These findings are supported by in vitro and in vivo experiments showing that lycopene not only enhances the antioxidant response of prostate cells, but that it is even able to inhibit proliferation, induce apoptosis and decrease the metastatic capacity of prostate cancer cells. However, there is still no clearly proven clinical evidence supporting the use of lycopene in the prevention or treatment of prostate cancer, due to the only limited number of published randomized clinical trials and the varying quality of existing studies. The scope of this article is to discuss the potential impact of lycopene on prostate cancer by giving an overview about its molecular mechanisms and clinical effects. © 2013 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
The mechanisms leading to colonization of metastatic breast cancer cells (BCa) in the skeleton are still not fully understood. Here, we demonstrate that mineralized extracellular matrices secreted by primary human osteoblasts (hOBM) modulate cellular processes associated with BCa colonization of bone. A panel of four BCa cell lines of different bone-metastatic potential (T47D, SUM1315, MDA-MB-231, and the bone-seeking subline MDA-MB-231BO) was cultured on hOBM. After 3 days, the metastatic BCa cells had undergone morphological changes on hOBM and were aligned along the hOBM's collagen type I fibrils that were decorated with bone-specific proteins. In contrast, nonmetastatic BCa cells showed a random orientation on hOBM. Atomic force microscopy-based single-cell force spectroscopy revealed that the metastatic cell lines adhered more strongly to hOBM compared with nonmetastatic cells. Function-blocking experiments indicated that β1-integrins mediated cell adhesion to hOBM. In addition, metastatic BCa cells migrated directionally and invaded hOBM, which was accompanied by enhanced MMP-2 and -9 secretion. Furthermore, we observed gene expression changes associated with osteomimickry in BCa cultured on hOBM. As such, osteopontin mRNA levels were significantly increased in SUM1315 and MDA-MB-231BO cells in a β1-integrin-dependent manner after growing for 3 days on hOBM compared with tissue culture plastic. In conclusion, our results show that extracellular matrices derived from human osteoblasts represent a powerful experimental platform to dissect mechanisms underlying critical steps in the development of bone metastases.
Resumo:
Bone metastases are severely debilitating and have a significant impact on the quality of life of women with metastatic breast cancer. Treatment options are limited and in order to develop more targeted therapies, improved understanding of the complex mechanisms that lead to bone lesion development are warranted. Interestingly, whilst prostate-derived bone metastases are characterised by mixed or osteoblastic lesions, breast-derived bone metastases are characterised by osteolytic lesions, suggesting unique regulatory patterns. This study aimed to measure the changes in bone formation and bone resorption activity at two time-points (18 and 36 days) during development of the bone lesion following intratibial injection of MDA-MB-231 human breast cancer cells into the left tibiae of Severely Combined Immuno-Deficient (SCID) mice. The contralateral tibia was used as a control. Tibiae were extracted and processed for undecalcified histomorphometric analysis. We provide evidence that the early bone loss observed following exposure to MDA-MB-231 cells was due to a significant reduction in mineral apposition rate, rather than increased levels of bone resorption. This suggests that osteoblast activity was impaired in the presence of breast cancer cells, contrary to previous reports of osteoclast-dependent bone loss. Furthermore mRNA expression of Dickkopf Homolog 1 (DKK-1) and Noggin were confirmed in the MDA-MB-231 cell line, both of which antagonise osteoblast regulatory pathways. The observed bone loss following injection of cancer cells was due to an overall thinning of the trabecular bone struts rather than perforation of the bone tissue matrix (as measured by trabecular width and trabecular separation, respectively), suggesting an opportunity to reverse the cancer-induced bone changes. These novel insights into the mechanisms through which osteolytic bone lesions develop may be important in the development of new treatment strategies for metastatic breast cancer patients.
Resumo:
Ovarian cancer, in particular epithelial ovarian cancer (EOC), is commonly diagnosed when the tumor has metastasized into the abdominal cavity with an accumulation of ascites fluid. Combining histopathology and genetic variations, EOC can be sub-grouped into Type-I and Type-II tumors, of which the latter are more aggressive and metastatic. Metastasis and chemoresistance are the key events associated with the tumor microenvironment that lead to a poor patient outcome. Kallikrein-related peptidases (KLKs) are aberrantly expressed in EOC, in particular, in the more metastatic Type-II tumors. KLKs are a family of 15 serine proteases that are expressed in diverse human tissues and involved in various patho-physiological processes. As extracellular enzymes, KLKs function in the hydrolysis of growth factors, proteases, cell membrane bound receptors, adhesion proteins, and cytokines initiating intracellular signaling pathways and their downstream events. High KLK levels are differentially associated with the prognosis of ovarian cancer patients, suggesting that they not only have application as biomarkers but also function in disease progression, and therefore are potential therapeutic targets. Recent studies have demonstrated the function of these proteases in promoting and/or suppressing the invasive behavior of ovarian cancer cells in metastasis in vitro and in vivo. Both conventional cell culture methods and three-dimensional platforms have been applied to mimic the ovarian cancer microenvironment of patients, such as the solid stromal matrix and ascites fluid. Here we summarize published studies to provide an overview of our understanding of the role of KLKs in EOC, and to lay the foundation for future research directions.
Resumo:
Cancer-associated proteases promote peritoneal dissemination and chemoresistance in malignant progression. In this study, kallikrein-related peptidases 4, 5, 6, and 7 (KLK4-7)-cotransfected OV-MZ-6 ovarian cancer cells were embedded in a bioengineered three-dimensional (3D) microenvironment that contains RGD motifs for integrin engagement to analyze their spheroid growth and survival after chemotreatment. KLK4-7-cotransfected cells formed larger spheroids and proliferated more than controls in 3D, particularly within RGD-functionalized matrices, which was reduced upon integrin inhibition. In contrast, KLK4-7-expressing cell monolayers proliferated less than controls, emphasizing the relevance of the 3D microenvironment and integrin engagement. In a spheroid-based animal model, KLK4-7-overexpression induced tumor growth after 4 weeks and intraperitoneal spread after 8 weeks. Upon paclitaxel administration, KLK4-7-expressing tumors declined in size by 91% (controls: 87%) and showed 90% less metastatic outgrowth (controls: 33%, P<0.001). KLK4-7-expressing spheroids showed 53% survival upon paclitaxel treatment (controls: 51%), accompanied by enhanced chemoresistance-related factors, and their survival was further reduced by combination treatment of paclitaxel with KLK4/5/7 (22%, P=0.007) or MAPK (6%, P=0.006) inhibition. The concomitant presence of KLK4-7 in ovarian cancer cells together with integrin activation drives spheroid formation and proliferation. Combinatorial approaches of paclitaxel and KLK/MAPK inhibition may be more efficient for late-stage disease than chemotherapeutics alone as these inhibitory regimens reduced cancer spheroid growth to a greater extent than paclitaxel alone.
Resumo:
Kallikrein-related peptidases, in particular KLK4, 5, 6 and 7 (4-7), often have elevated expression levels in ovarian cancer. In OV-MZ-6 ovarian cancer cells, combined expression of KLK4-7 reduces cell adhesion and increases cell invasion and resistance to paclitaxel. The present work investigates how KLK4-7 shape the secreted proteome ("secretome") and proteolytic profile ("degradome") of ovarian cancer cells. The secretome comparison consistently identified >900 proteins in three replicate analyses. Expression of KLK4-7 predominantly affected the abundance of proteins involved in cell-cell communication. Among others, this includes increased levels of transforming growth factor β-1 (TGFβ-1). KLK4-7 co-transfected OV-MZ-6 cells share prominent features of elevated TGFβ-1 signaling, including increased abundance of neural cell adhesion molecule L1 (L1CAM). Augmented levels of TGFβ-1 and L1CAM upon expression of KLK4-7 were corroborated in vivo by an ovarian cancer xenograft model. The degradomic analysis showed that KLK4-7 expression mostly affected cleavage sites C-terminal to arginine, corresponding to the preference of kallikreins 4, 5 and 6. Putative kallikrein substrates include chemokines, such as growth differentiation factor 15 (GDF 15) and macrophage migration inhibitory factor (MIF). Proteolytic maturation of TGFβ-1 was also elevated. KLK4-7 have a pronounced, yet non-degrading impact on the secreted proteome, with a strong association between these proteases and TGFβ-1 signaling in tumor biology. © 2013 Federation of European Biochemical Societies.
Resumo:
The non-canonical Wnt pathway, a regulator of cellular motility and morphology, is increasingly implicated in cancer metastasis. In a quantitative PCR array analysis of 84 Wnt pathway associated genes, both non-canonical and canonical pathways were activated in primary and metastatic tumors relative to normal prostate. Expression of the Wnt target gene PITX2 in a prostate cancer (PCa) bone metastasis was strikingly elevated over normal prostate (over 2,000-fold) and primary prostate cancer (over 200-fold). The elevation of PITX2 protein was also evident on tissue microarrays, with strong PITX2 immunostaining in PCa skeletal and, to a lesser degree, soft tissue metastases. PITX2 is associated with cell migration during normal tissue morphogenesis. In our studies, overexpression of individual PITX2A/B/C isoforms stimulated PC-3 PCa cell motility, with the PITX2A isoform imparting a specific motility advantage in the presence of non-canonical Wnt5a stimulation. Furthermore, PITX2 specific shRNA inhibited PC-3 cell migration toward bone cell derived chemoattractant. These experimental results support a pivotal role of PITX2A and non-canonical Wnt signaling in enhancement of PCa cell motility, suggest PITX2 involvement in homing of PCa to the skeleton, and are consistent with a role for PITX2 in PCa metastasis to soft and bone tissues. Our findings, which significantly expand previous evidence that PITX2 is associated with risk of PCa biochemical recurrence, indicate that variation in PITX2 expression accompanies and may promote prostate tumor progression and metastasis.
Resumo:
Background L-type amino acid transporters (LATs) uptake neutral amino acids including L-leucine into cells, stimulating mammalian target of rapamycin complex 1 signaling and protein synthesis. LAT1 and LAT3 are overexpressed at different stages of prostate cancer, and they are responsible for increasing nutrients and stimulating cell growth. Methods We examined LAT3 protein expression in human prostate cancer tissue microarrays. LAT function was inhibited using a leucine analog (BCH) in androgen-dependent and -independent environments, with gene expression analyzed by microarray. A PC-3 xenograft mouse model was used to study the effects of inhibiting LAT1 and LAT3 expression. Results were analyzed with the Mann-Whitney U or Fisher exact tests. All statistical tests were two-sided. Results LAT3 protein was expressed at all stages of prostate cancer, with a statistically significant decrease in expression after 4–7 months of neoadjuvant hormone therapy (4–7 month mean = 1.571; 95% confidence interval = 1.155 to 1.987 vs 0 month = 2.098; 95% confidence interval = 1.962 to 2.235; P = .0187). Inhibition of LAT function led to activating transcription factor 4–mediated upregulation of amino acid transporters including ASCT1, ASCT2, and 4F2hc, all of which were also regulated via the androgen receptor. LAT inhibition suppressed M-phase cell cycle genes regulated by E2F family transcription factors including critical castration-resistant prostate cancer regulatory genes UBE2C, CDC20, and CDK1. In silico analysis of BCH-downregulated genes showed that 90.9% are statistically significantly upregulated in metastatic castration-resistant prostate cancer. Finally, LAT1 or LAT3 knockdown in xenografts inhibited tumor growth, cell cycle progression, and spontaneous metastasis in vivo. Conclusion Inhibition of LAT transporters may provide a novel therapeutic target in metastatic castration-resistant prostate cancer, via suppression of mammalian target of rapamycin complex 1 activity and M-phase cell cycle genes.
Resumo:
Background Ghrelin is a 28 amino acid peptide hormone that is expressed in the stomach and a range of peripheral tissues, where it frequently acts as an autocrine/paracrine growth factor. Ghrelin is modified by a unique acylation required for it to activate its cognate receptor, the growth hormone secretagogue receptor (GHSR), which mediates many of the actions of ghrelin. Recently, the enzyme responsible for adding the fatty acid residue (octanoyl/acyl group) to the third amino acid of ghrelin, GOAT (ghrelin O-acyltransferase), was identified. Methods We used cell culture, quantitative real-time reverse transcription (RT)-PCR and immunohistochemistry to demonstrate the expression of GOAT in prostate cancer cell lines and tissues from patients. Real-time RT-PCR was used to demonstrate the expression of prohormone convertase (PC)1/3, PC2 and furin in prostate cancer cell lines. Prostate-derived cell lines were treated with ghrelin and desacyl ghrelin and the effect on GOAT expression was measured using quantitative RT-PCR. Results We have demonstrated that GOAT mRNA and protein are expressed in the normal prostate and human prostate cancer tissue samples. The RWPE-1 and RWPE-2 normal prostate-derived cell lines and the LNCaP, DU145, and PC3 prostate cancer cell lines express GOAT and at least one other enzyme that is necessary to produce mature, acylated ghrelin from proghrelin (PC1/3, PC2 or furin). Finally, ghrelin, but not desacyl ghrelin (unacylated ghrelin), can directly regulate the expression of GOAT in the RWPE-1 normal prostate derived cell line and the PC3 prostate cancer cell line. Ghrelin treatment (100nM) for 6 hours significantly decreased GOAT mRNA expression two-fold (P < 0.05) in the PC3 prostate cancer cell line, however, ghrelin did not regulate GOAT expression in the DU145 and LNCaP prostate cancer cell lines. Conclusions This study demonstrates that GOAT is expressed in prostate cancer specimens and cell lines. Ghrelin regulates GOAT expression, however, this is likely to be cell-type specific. The expression of GOAT in prostate cancer supports the hypothesis that the ghrelin axis has autocrine/paracrine roles. We propose that the RWPE-1 prostate cell line and the PC3 prostate cancer cell line may be useful for investigating GOAT regulation and function.
Resumo:
Although at present, there is a high incidence of prostate cancer, particularly in the Western world, mortality from this disease is declining and occurs primarily only from clinically significant late stage tumors with a poor prognosis. A major current focus of this field is the identification of new biomarkers which can detect earlier, and more effectively, clinically significant tumors from those deemed “low risk”, as well as predict the prognostic course of a particular cancer. This strategy can in turn offer novel avenues for targeted therapies. The large family of Receptor Tyrosine Kinases, the Ephs, and their binding partners, the ephrins, has been implicated in many cancers of epithelial origin through stimulation of oncogenic transformation, tumor angiogenesis, and promotion of increased cell survival, invasion and migration. They also show promise as both biomarkers of diagnostic and prognostic value and as targeted therapies in cancer. This review will briefly discuss the complex roles and biological mechanisms of action of these receptors and ligands and, with regard to prostate cancer, highlight their potential as biomarkers for both diagnosis and prognosis, their application as imaging agents, and current approaches to assessing them as therapeutic targets. This review demonstrates the need for future studies into those particular family members that will prove helpful in understanding the biology and potential as targets for treatment of prostate cancer.