714 resultados para Multi-User Detention


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Collisions between different types of road users at intersections form a substantial component of the road toll. This paper presents an analysis of driver, cyclist, motorcyclist and pedestrian behaviour at intersections that involved the application of an integrated suite of ergonomics methods, the Event Analysis of Systemic Teamwork (EAST) framework, to on-road study data. EAST was used to analyse behaviour at three intersections using data derived from an on-road study of driver, cyclist, motorcyclist and pedestrian behaviour. The analysis shows the differences in behaviour and cognition across the different road user groups and pinpoints instances where this may be creating conflicts between different road users. The role of intersection design in creating these differences in behaviour and resulting conflicts is discussed. It is concluded that currently intersections are not designed in a way that supports behaviour across the four forms of road user studied. Interventions designed to improve intersection safety are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Twitter is a very popular social network website that allows users to publish short posts called tweets. Users in Twitter can follow other users, called followees. A user can see the posts of his followees on his Twitter profile home page. An information overload problem arose, with the increase of the number of followees, related to the number of tweets available in the user page. Twitter, similar to other social network websites, attempts to elevate the tweets the user is expected to be interested in to increase overall user engagement. However, Twitter still uses the chronological order to rank the tweets. The tweets ranking problem was addressed in many current researches. A sub-problem of this problem is to rank the tweets for a single followee. In this paper we represent the tweets using several features and then we propose to use a weighted version of the famous voting system Borda-Count (BC) to combine several ranked lists into one. A gradient descent method and collaborative filtering method are employed to learn the optimal weights. We also employ the Baldwin voting system for blending features (or predictors). Finally we use the greedy feature selection algorithm to select the best combination of features to ensure the best results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective Quality of Experience (QoE) management for mobile video delivery – to optimize overall user experience while adapting to heterogeneous use contexts – is still a big challenge to date. This paper proposes a mobile video delivery system to emphasize the use of acceptability as the main indicator of QoE to manage the end-to-end factors in delivering mobile video services. The first contribution is a novel framework for user-centric mobile video system that is based on acceptability-based QoE (A-QoE) prediction models, which were derived from comprehensive subjective studies. The second contribution is results from a field study that evaluates the user experience of the proposed system during realistic usage circumstances, addressing the impacts of perceived video quality, loading speed, interest in content, viewing locations, network bandwidth, display devices, and different video coding approaches, including region-of-interest (ROI) enhancement and center zooming

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To examine evidence-based strategies that motivate appropriate action and increase informed decision-making during the response and recovery phases of disasters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies examining the ability of motivational enhancement therapy (MET) to augment education provision among ecstasy users have produced mixed results and none have examined whether treatment fidelity was related to ecstasy use outcomes. The primary objectives of this multi-site, parallel, two-group randomized controlled trial were to determine if a single-session of MET could instill greater commitment to change and reduce ecstasy use and related problems more so than an education-only intervention and whether MET sessions delivered with higher treatment fidelity are associated with better outcomes. The secondary objective was to assess participants’ satisfaction with their assigned interventions. Participants (N = 174; Mage = 23.62) at two Australian universities were allocated randomly to receive a 15-minute educational session on ecstasy use (n = 85) or a 50-minute session of MET that included an educational component (n = 89). Primary outcomes were assessed at baseline, and then at 4-, 16-, and 24-weeks post-baseline, while the secondary outcome measure was assessed 4-weeks post-baseline by researchers blind to treatment allocation. Overall, the treatment fidelity was acceptable to good in the MET condition. There were no statistical differences at follow-up between the groups on the primary outcomes of ecstasy use, ecstasy-related problems, and commitment to change. Both interventions groups reported a 50% reduction in their ecstasy use and a 20% reduction in the severity of their ecstasy-related problems at the 24-week follow up. Commitment to change slightly improved for both groups (9% - 17%). Despite the lack of between-group statistical differences on primary outcomes, participants who received a single session of MET were slightly more satisfied with their intervention than those who received education only. MI fidelity was not associated with ecstasy use outcomes. Given these findings, future research should focus on examining mechanisms of change. Such work may suggest new methods for enhancing outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the popularity of security cameras in public places, it is of interest to design an intelligent system that can efficiently detect events automatically. This paper proposes a novel algorithm for multi-person event detection. To ensure greater than real-time performance, features are extracted directly from compressed MPEG video. A novel histogram-based feature descriptor that captures the angles between extracted particle trajectories is proposed, which allows us to capture motion patterns of multi-person events in the video. To alleviate the need for fine-grained annotation, we propose the use of Labelled Latent Dirichlet Allocation, a “weakly supervised” method that allows the use of coarse temporal annotations which are much simpler to obtain. This novel system is able to run at approximately ten times real-time, while preserving state-of-theart detection performance for multi-person events on a 100-hour real-world surveillance dataset (TRECVid SED).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a tag-based recommender system, the multi-dimensional correlation should be modeled effectively for finding quality recommendations. Recently, few researchers have used tensor models in recommendation to represent and analyze latent relationships inherent in multi-dimensions data. A common approach is to build the tensor model, decompose it and, then, directly use the reconstructed tensor to generate the recommendation based on the maximum values of tensor elements. In order to improve the accuracy and scalability, we propose an implementation of the -mode block-striped (matrix) product for scalable tensor reconstruction and probabilistically ranking the candidate items generated from the reconstructed tensor. With testing on real-world datasets, we demonstrate that the proposed method outperforms the benchmarking methods in terms of recommendation accuracy and scalability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research falls in the area of enhancing the quality of tag-based item recommendation systems. It aims to achieve this by employing a multi-dimensional user profile approach and by analyzing the semantic aspects of tags. Tag-based recommender systems have two characteristics that need to be carefully studied in order to build a reliable system. Firstly, the multi-dimensional correlation, called as tag assignment , should be appropriately modelled in order to create the user profiles [1]. Secondly, the semantics behind the tags should be considered properly as the flexibility with their design can cause semantic problems such as synonymy and polysemy [2]. This research proposes to address these two challenges for building a tag-based item recommendation system by employing tensor modeling as the multi-dimensional user profile approach, and the topic model as the semantic analysis approach. The first objective is to optimize the tensor model reconstruction and to improve the model performance in generating quality rec-ommendation. A novel Tensor-based Recommendation using Probabilistic Ranking (TRPR) method [3] has been developed. Results show this method to be scalable for large datasets and outperforming the benchmarking methods in terms of accuracy. The memory efficient loop implements the n-mode block-striped (matrix) product for tensor reconstruction as an approximation of the initial tensor. The probabilistic ranking calculates the probabil-ity of users to select candidate items using their tag preference list based on the entries generated from the reconstructed tensor. The second objective is to analyse the tag semantics and utilize the outcome in building the tensor model. This research proposes to investigate the problem using topic model approach to keep the tags nature as the “social vocabulary” [4]. For the tag assignment data, topics can be generated from the occurrences of tags given for an item. However there is only limited amount of tags availa-ble to represent items as collection of topics, since an item might have only been tagged by using several tags. Consequently, the generated topics might not able to represent the items appropriately. Furthermore, given that each tag can belong to any topics with various probability scores, the occurrence of tags cannot simply be mapped by the topics to build the tensor model. A standard weighting technique will not appropriately calculate the value of tagging activity since it will define the context of an item using a tag instead of a topic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose The purpose of this paper is to test a multilevel model of the main and mediating effects of supervisor conflict management style (SCMS) climate and procedural justice (PJ) climate on employee strain. It is hypothesized that workgroup-level climate induced by SCMS can fall into four types: collaborative climate, yielding climate, forcing climate, or avoiding climate; that these group-level perceptions will have differential effects on employee strain, and will be mediated by PJ climate. Design/methodology/approach Multilevel SEM was used to analyze data from 420 employees nested in 61 workgroups. Findings Workgroups that perceived high supervisor collaborating climate reported lower sleep disturbance, job dissatisfaction, and action-taking cognitions. Workgroups that perceived high supervisor yielding climate and high supervisor forcing climate reported higher anxiety/depression, sleep disturbance, job dissatisfaction, and action-taking cognitions. Results supported a PJ climate mediation model when supervisors’ behavior was reported to be collaborative and yielding. Research limitations/implications The cross-sectional research design places limitations on conclusions about causality; thus, longitudinal studies are recommended. Practical implications Supervisor behavior in response to conflict may have far-reaching effects beyond those who are a party to the conflict. The more visible use of supervisor collaborative CMS may be beneficial. Social implications The economic costs associated with workplace conflict may be reduced through the application of these findings. Originality/value By applying multilevel theory and analysis, we extend workplace conflict theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organisations employ Enterprise Social Networks (ESNs) (such as Yammer) expecting better intra-organisational communication and collaboration. However, ESNs are struggling to gain momentum and wide adoption among users. Promoting user participation is a challenge, particularly in relation to lurkers – the silent ESN members who do not contribute any content. Building on behaviour change research, we propose a three-route model consisting of the central, peripheral and coercive routes of influence that depict users’ cognitive strategies, and we examine how management interventions (e.g. sending promotional emails) impact users’ beliefs and (consequent) posting and lurking behaviours in ESNs. Furthermore, we identify users’ salient motivations to lurk or post. We employ a multi-method research design to conceptualise, operationalise and validate the research model. This study has implications for academics and practitioners regarding the nature, patterns and outcomes of management interventions in prompting ESN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a low-bandwidth multi-robot communication system designed to serve as a backup communication channel in the event a robot suffers a network device fault. While much research has been performed in the area of distributing network communication across multiple robots within a system, individual robots are still susceptible to hardware failure. In the past, such robots would simply be removed from service, and their tasks re-allocated to other members. However, there are times when a faulty robot might be crucial to a mission, or be able to contribute in a less communication intensive area. By allowing robots to encode and decode messages into unique sequences of DTMF symbols, called words, our system is able to facilitate continued low-bandwidth communication between robots without access to network communication. Our results have shown that the system is capable of permitting robots to negotiate task initiation and termination, and is flexible enough to permit a pair of robots to perform a simple turn taking task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Secure Shell (SSH) protocol is widely used to provide secure remote access to servers, making it among the most important security protocols on the Internet. We show that the signed-Diffie--Hellman SSH ciphersuites of the SSH protocol are secure: each is a secure authenticated and confidential channel establishment (ACCE) protocol, the same security definition now used to describe the security of Transport Layer Security (TLS) ciphersuites. While the ACCE definition suffices to describe the security of individual ciphersuites, it does not cover the case where parties use the same long-term key with many different ciphersuites: it is common in practice for the server to use the same signing key with both finite field and elliptic curve Diffie--Hellman, for example. While TLS is vulnerable to attack in this case, we show that SSH is secure even when the same signing key is used across multiple ciphersuites. We introduce a new generic multi-ciphersuite composition framework to achieve this result in a black-box way.