709 resultados para Electromechanical Heart Model
Resumo:
Axon guidance by molecular gradients plays a crucial role in wiring up the nervous system. However, the mechanisms axons use to detect gradients are largely unknown. We first develop a Bayesian “ideal observer” analysis of gradient detection by axons, based on the hypothesis that a principal constraint on gradient detection is intrinsic receptor binding noise. Second, from this model, we derive an equation predicting how the degree of response of an axon to a gradient should vary with gradient steepness and absolute concentration. Third, we confirm this prediction quantitatively by performing the first systematic experimental analysis of how axonal response varies with both these quantities. These experiments demonstrate a degree of sensitivity much higher than previously reported for any chemotacting system. Together, these results reveal both the quantitative constraints that must be satisfied for effective axonal guidance and the computational principles that may be used by the underlying signal transduction pathways, and allow predictions for the degree of response of axons to gradients in a wide variety of in vivo and in vitro settings.
Resumo:
Objective: To determine whether primary care management of chronic heart failure (CHF) differed between rural and urban areas in Australia. Design: A cross-sectional survey stratified by Rural, Remote and Metropolitan Areas (RRMA) classification. The primary source of data was the Cardiac Awareness Survey and Evaluation (CASE) study. Setting: Secondary analysis of data obtained from 341 Australian general practitioners and 23 845 adults aged 60 years or more in 1998. Main outcome measures: CHF determined by criteria recommended by the World Health Organization, diagnostic practices, use of pharmacotherapy, and CHF-related hospital admissions in the 12 months before the study. Results: There was a significantly higher prevalence of CHF among general practice patients in large and small rural towns (16.1%) compared with capital city and metropolitan areas (12.4%) (P < 0.001). Echocardiography was used less often for diagnosis in rural towns compared with metropolitan areas (52.0% v 67.3%, P < 0.001). Rates of specialist referral were also significantly lower in rural towns than in metropolitan areas (59.1% v 69.6%, P < 0.001), as were prescribing rates of angiotensin-converting enzyme inhibitors (51.4% v 60.1%, P < 0.001). There was no geographical variation in prescribing rates of β-blockers (12.6% [rural] v 11.8% [metropolitan], P = 0.32). Overall, few survey participants received recommended “evidence-based practice” diagnosis and management for CHF (metropolitan, 4.6%; rural, 3.9%; and remote areas, 3.7%). Conclusions: This study found a higher prevalence of CHF, and significantly lower use of recommended diagnostic methods and pharmacological treatment among patients in rural areas.
Resumo:
A classical condition for fast learning rates is the margin condition, first introduced by Mammen and Tsybakov. We tackle in this paper the problem of adaptivity to this condition in the context of model selection, in a general learning framework. Actually, we consider a weaker version of this condition that allows one to take into account that learning within a small model can be much easier than within a large one. Requiring this “strong margin adaptivity” makes the model selection problem more challenging. We first prove, in a general framework, that some penalization procedures (including local Rademacher complexities) exhibit this adaptivity when the models are nested. Contrary to previous results, this holds with penalties that only depend on the data. Our second main result is that strong margin adaptivity is not always possible when the models are not nested: for every model selection procedure (even a randomized one), there is a problem for which it does not demonstrate strong margin adaptivity.
Resumo:
The measurement error model is a well established statistical method for regression problems in medical sciences, although rarely used in ecological studies. While the situations in which it is appropriate may be less common in ecology, there are instances in which there may be benefits in its use for prediction and estimation of parameters of interest. We have chosen to explore this topic using a conditional independence model in a Bayesian framework using a Gibbs sampler, as this gives a great deal of flexibility, allowing us to analyse a number of different models without losing generality. Using simulations and two examples, we show how the conditional independence model can be used in ecology, and when it is appropriate.
Resumo:
Organizations invest heavily in Customer Relationship Management (CRM) and Supply Chain Management (SCM) systems, and their related infrastructure, presumably expecting positive benefits to the organization. Assessing the benefits of such systems is an important aspect of managing such systems. Given the substantial differences between CRM and SCM systems with traditional intra-organizational applications, existing Information Systems benefits measurement models and frameworks are ill-suited to gauge CRM and SCM benefits. This paper reports the preliminary findings of a research that seeks to develop a measurement model to assess benefits of CRM and SCM applications. The a-priori benefits measurement model is developed reviewing the 55 academic studies and 40 practitioner papers. The review of related literature yielded 606 benefits, which were later synthesized into 74 mutually exclusive benefit measures of CRM and SCM applications arranged under five dimensions.