922 resultados para Decimal system
Resumo:
Session Initiation Protocol (SIP) is developed to provide advanced voice services over IP networks. SIP unites telephony and data world, permitting telephone calls to be transmitted over Intranets and Internet. Increase in network performance and new mechanisms for guaranteed quality of service encourage this consolidation to provide toll cost savings. Security comes up as one of the most important issues when voice communication and critical voice applications are considered. Not only the security methods provided by traditional telephony systems, but also additional methods are required to overcome security risks introduced by the public IP networks. SIP considers security problems of such a consolidation and provides a security framework. There are several security methods defined within SIP specifications and extensions. But, suggested methods can not solve all the security problems of SIP systems with various system requirements. In this thesis, a Kerberos based solution is proposed for SIP security problems, including SIP authentication and privacy. The proposed solution tries to establish flexible and scalable SIP system that will provide desired level of security for voice communications and critical telephony applications.
Resumo:
We found that scientists in Australia spent more than five centuries' worth of time preparing research-grant proposals for consideration by the largest funding scheme of 2012. Because just 20.5% of these applications were successful, the equivalent of some four centuries of effort returned no immediate benefit to researchers and wasted valuable research time. The system needs reforming and alternative funding processes should be investigated...
Resumo:
This paper proposes a self-tuning feedforward active noise control (ANC) system with online secondary path modeling. The step-size parameters of the controller and modeling filters have crucial rule on the system performance. In literature, these parameters are adjusted by trial-and-error. In other words, they are manually initialized before system starting, which require performing extensive experiments to ensure the convergence of the system. Hence there is no guarantee that the system could perform well under different situations. In the proposed method, the appropriate values for the step-sizes are obtained automatically. Computer simulation results indicate the effectiveness of the proposed method.
Resumo:
The overrepresentation of students from minority ethnic groups in separate special education settings has been extensively documented in North America, yet little research exists for Australian school systems. To address this gap, we systematically analyzed 13 years of enrolment data from the state of New South Wales. Stark differences are seen in patterns of enrolment between Indigenous students, students from a Language Background Other than English (LBOTE), and non-Indigenous English speaking students. Moreover, these differences are increasing. While enrollments of Indigenous students in separate settings increased faster across time than did enrollments of Indigenous students in mainstream, enrollments of LBOTE students in mainstream increased faster than did enrollments of LBOTE students in separate settings.
Resumo:
Railway bridges deteriorate with age. Factors such as environmental effects on different materials of a bridge, variation of loads, fatigue, etc will reduce the remaining life of bridges. Bridges are currently rated individually for maintenance and repair actions according to the structural conditions of their elements. Dealing with thousands of bridges and several factors that cause deterioration, makes the rating process extremely complicated. Current simplified but practical rating methods are not based on an accurate structural condition assessment system. On the other hand, the sophisticated but more accurate methods are only used for a single bridge or particular types of bridges. It is therefore necessary to develop a practical and accurate system which will be capable of rating a network of railway bridges. This paper introduces a new method for rating a network of bridges based on their current and future structural conditions. The method identifies typical bridges representing a group of railway bridges. The most crucial agents will be determined and categorized to criticality and vulnerability factors. Classification based on structural configuration, loading, and critical deterioration factors will be conducted. Finally a rating method for a network of railway bridges that takes into account the effects of damaged structural components due to variations in loading and environmental conditions on the integrity of the whole structure will be proposed. The outcome of this research is expected to significantly improve the rating methods for railway bridges by considering the unique characteristics of different factors and incorporating the correlation between them.
Resumo:
Railway bridges deteriorate with age. Factors such as environmental effects on different materials of a bridge, variation of loads, fatigue, etc. will reduce the remaining life of bridges. Dealing with thousands of bridges and several factors that cause deterioration, makes the rating process extremely complicated. Current simplified but practical methods of rating a network of bridges are not based on an accurate structural condition assessment system. On the other hand, the sophisticated but more accurate methods are only used for a single bridge or particular types of bridges. It is therefore necessary to develop a practical and accurate system, which will be capable of rating a network of railway bridges. This article introduces a new method to rate a network of bridges based on their current and future structural conditions. The method identifies typical bridges representing a group of railway bridges. The most crucial agents will be determined and categorized to criticality and vulnerability factors. Classification based on structural configuration, loading, and critical deterioration factors will be conducted. Finally a rating method for a network of railway bridges that takes into account the effects of damaged structural components due to variations in loading and environmental conditions on the integrity of the whole structure will be proposed. The outcome of this article is expected to significantly improve the rating methods for railway bridges by considering the unique characteristics of different factors and incorporating the correlation among them.
Resumo:
The security of industrial control systems in critical infrastructure is a concern for the Australian government and other nations. There is a need to provide local Australian training and education for both control system engineers and information technology professionals. This paper proposes a postgraduate curriculum of four courses to provide knowledge and skills to protect critical infrastructure industrial control systems. Our curriculum is unique in that it provides security awareness but also the advanced skills required for security specialists in this area. We are aware that in the Australian context there is a cultural gap between the thinking of control system engineers who are responsible for maintaining and designing critical infrastructure and information technology professionals who are responsible for protecting these systems from cyber attacks. Our curriculum aims to bridge this gap by providing theoretical and practical exercises that will raise the awareness and preparedness of both groups of professionals.
Resumo:
Restoring a large-scale power system has always been a complicated and important issue. A lot of research work has been done on different aspects of the whole power system restoration procedure. However, more time will be required to complete the power system restoration process in an actual situation if accurate and real-time system data cannot be obtained. With the development of the wide area monitoring system (WAMS), power system operators are capable of accessing to more accurate data in the restoration stage after a major outage. The ultimate goal of the system restoration is to restore as much load as possible while in the shortest period of time after a blackout, and the restorable load can be estimated by employing WAMS. Moreover, discrete restorable loads are employed considering the limited number of circuit-breaker operations and the practical topology of distribution systems. In this work, a restorable load estimation method is proposed employing WAMS data after the network frame has been reenergized, and WAMS is also employed to monitor the system parameters in case the newly recovered system becomes unstable again. The proposed method has been validated with the New England 39-Bus system and an actual power system in Guangzhou, China.
Resumo:
Aerial Vehicles (UAV) has become a significant growing segment of the global aviation industry. These vehicles are developed with the intention of operating in regions where the presence of onboard human pilots is either too risky or unnecessary. Their popularity with both the military and civilian sectors have seen the use of UAVs in a diverse range of applications, from reconnaissance and surveillance tasks for the military, to civilian uses such as aid relief and monitoring tasks. Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. This paper presents the development of a parallel Hybrid Electric Propulsion System (HEPS) on a small fixed-wing UAV incorporating an Ideal Operating Line (IOL) control strategy. A simulation model of an UAV was developed in the MATLAB Simulink environment, utilising the AeroSim Blockset and the in-built Aerosonde UAV block and its parameters. An IOL analysis of an Aerosonde engine was performed, and the most efficient (i.e. provides greatest torque output at the least fuel consumption) points of operation for this engine were determined. Simulation models of the components in a HEPS were designed and constructed in the MATLAB Simulink environment. It was demonstrated through simulation that an UAV with the current HEPS configuration was capable of achieving a fuel saving of 6.5%, compared to the ICE-only configuration. These components form the basis for the development of a complete simulation model of a Hybrid-Electric UAV (HEUAV).
Resumo:
The main objective of this paper is to describe the development of a remote sensing airborne air sampling system for Unmanned Aerial Systems (UAS) and provide the capability for the detection of particle and gas concentrations in real time over remote locations. The design of the air sampling methodology started by defining system architecture, and then by selecting and integrating each subsystem. A multifunctional air sampling instrument, with capability for simultaneous measurement of particle and gas concentrations was modified and integrated with ARCAA’s Flamingo UAS platform and communications protocols. As result of the integration process, a system capable of both real time geo-location monitoring and indexed-link sampling was obtained. Wind tunnel tests were conducted in order to evaluate the performance of the air sampling instrument in controlled nonstationary conditions at the typical operational velocities of the UAS platform. Once the remote fully operative air sampling system was obtained, the problem of mission design was analyzed through the simulation of different scenarios. Furthermore, flight tests of the complete air sampling system were then conducted to check the dynamic characteristics of the UAS with the air sampling system and to prove its capability to perform an air sampling mission following a specific flight path.
Resumo:
The well-known power system stabilizer (PSS) is used to generate supplementary control signals for the excitation system of a generator so as to damp low frequency oscillations in the power system concerned. Up to now, various kinds of PSS design methods have been proposed and some of them applied in actual power systems with different degrees. Given this background, the small-disturbance eigenvalue analysis and large-disturbance dynamic simulations in the time domain are carried out to evaluate the performances of four different PSS design methods, including the Conventional PSS (CPSS), Single-Neuron PSS (SNPSS), Adaptive PSS (APSS) and Multi-band PSS (MBPSS). To make the comparisons equitable, the parameters of the four kinds of PSSs are all determined by the steepest descent method. Finally, an 8-unit 24-bus power system is employed to demonstrate the performances of the four kinds of PSSs by the well-established eigenvalue analysis as well as numerous digital simulations, and some useful conclusions obtained.
Resumo:
This report presents the first collection of data on juveniles’ contact with the criminal justice system as both alleged/convicted offenders and complainants/victims in New South Wales, the Australian Capital Territory, Victoria, Queensland, Western Australia, South Australia and the Northern Territory. Its primary objectives are to outline data from each of these jurisdictions on juveniles’ contact with the policing, courts and correctional systems and to determine what we do and do not know about juveniles’ contact with the criminal justice system.