590 resultados para Current efficiency


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salinity gradient power is proposed as a source of renewable energy when two solutions of different salinity are mixed. In particular, Pressure Retarded Osmosis (PRO) coupled with a Reverse Osmosis process (RO) has been previously suggested for power generation, using RO brine as the draw solution. However, integration of PRO with RO may have further value for increasing the extent of water recovery in a desalination process. Consequently, this study was designed to model the impact of various system parameters to better understand how to design and operate practical PRO-RO units. The impact of feed salinity and recovery rate for the RO process on the concentration of draw solution, feed pressure, and membrane area of the PRO process was evaluated. The PRO system was designed to operate at maximum power density of . Model results showed that the PRO power density generated intensified with increasing seawater salinity and RO recovery rate. For an RO process operating at 52% recovery rate and 35 g/L feed salinity, a maximum power density of 24 W/m2 was achieved using 4.5 M NaCl draw solution. When seawater salinity increased to 45 g/L and the RO recovery rate was 46%, the PRO power density increased to 28 W/m2 using 5 M NaCl draw solution. The PRO system was able to increase the recovery rate of the RO by up to 18% depending on seawater salinity and RO recovery rate. This result suggested a potential advantage of coupling PRO process with RO system to increase the recovery rate of the desalination process and reduce brine discharge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

- Introduction Heat-based training (HT) is becoming increasingly popular as a means of inducing acclimation before athletic competition in hot conditions and/or to augment the training impulse beyond that achieved in thermo-neutral conditions. Importantly, current understanding of the effects of HT on regenerative processes such as sleep and the interactions with common recovery interventions remain unknown. This study aimed to examine sleep characteristics during five consecutive days of training in the heat with the inclusion of cold-water immersion (CWI) compared to baseline sleep patterns. - Methods Thirty recreationally-trained males completed HT in 32 ± 1 °C and 60% rh for five consecutive days. Conditions included: 1) 90 min cycling at 40 % power at VO2max (Pmax) (90CONT; n = 10); 90 min cycling at 40 % Pmax with a 20 min CWI (14 ± 1 °C; 90CWI; n = 10); and 30 min cycling alternating between 40 and 70 % Pmax every 3 min, with no recovery intervention (30HIT; n = 10). Sleep quality and quantity was assessed during HT and four nights of 'baseline' sleep (BASE). Actigraphy provided measures of time in and out of bed, sleep latency, efficiency, total time in bed and total time asleep, wake after sleep onset, number of awakenings, and wakening duration. Subjective ratings of sleep were also recorded using a 1-5 Likert scale. Repeated measures analysis of variance (ANOVA) was completed to determine effect of time and condition on sleep quality and quantity. Cohen's d effect sizes were also applied to determine magnitude and trends in the data. - Results Sleep latency, efficiency, total time in bed and number of awakenings were not significantly different between BASE and HT (P > 0.05). However, total time asleep was significantly reduced (P = 0.01; d = 1.46) and the duration periods of wakefulness after sleep onset was significantly greater during HT compared with BASE (P = 0.001; d = 1.14). Comparison between training groups showed latency was significantly higher for the 30HIT group compared to 90CONT (P = 0.02; d = 1.33). Nevertheless, there were no differences between training groups for sleep efficiency, total time in bed or asleep, wake after sleep onset, number of awakenings or awake duration (P > 0.05). Further, cold-water immersion recovery had no significant effect on sleep characteristics (P > 0.05). - Discussion Sleep plays an important role in athletic recovery and has previously been demonstrated to be influenced by both exercise training and thermal strain. Present data highlight the effect of HT on reduced sleep quality, specifically reducing total time asleep due to longer duration awake during awakenings after sleep onset. Importantly, although cold water recovery accelerates the removal of thermal load, this intervention did not blunt the negative effects of HT on sleep characteristics. - Conclusion Training in hot conditions may reduce both sleep quantity and quality and should be taken into consideration when administering this training intervention in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis increased the researchers understanding of the relationship between operations and maintenance in underground longwall coal mines, using data from a Queensland underground coal mine. The thesis explores various relationships between recorded variables. Issues with human recorded data was uncovered, and results emphasised the significance of variables associated with conveyor operation to explain production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monosaccharide 2-O-sulfo-α-l-iduronic acid (IdoA2S) is one of the major components of glycosaminoglycans. The ability of molecular mechanics force fields to reproduce ring-puckering conformational equilibrium is important for the successful prediction of the free energies of interaction of these carbohydrates with proteins. Here we report unconstrained molecular dynamics simulations of IdoA2S monosaccharide that were carried out to investigate the ability of commonly used force fields to reproduce its ring conformational flexibility in aqueous solution. In particular, the distribution of ring conformer populations of IdoA2S was determined. The GROMOS96 force field with the SPC/E water potential can predict successfully the dominant skew-boat to chair conformational transition of the IdoA2S monosaccharide in aqueous solution. On the other hand, the GLYCAM06 force field with the TIP3P water potential sampled transitional conformations between the boat and chair forms. Simulations using the GROMOS96 force field showed no pseudorotational equilibrium fluctuations and hence no inter-conversion between the boat and twist boat ring conformers. Calculations of theoretical proton NMR coupling constants showed that the GROMOS96 force field can predict the skew-boat to chair conformational ratio in good agreement with the experiment, whereas GLYCAM06 shows worse agreement. The omega rotamer distribution about the C5–C6 bond was predicted by both force fields to have torsions around 10°, 190°, and 360°.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anorexia nervosa (AN) is an extremely serious mental illness, with a high mortality rate and many debilitating physical and psychological symptoms. While hospitalisation is sometimes required for patients with AN there remains no evidence base for “best practice’ inpatient treatment. With patients’ views recognised as critical to improving efficiency and outcomes, calls have been made for more qualitative research into inpatients’ experiences. In light of this the current paper utilised thematic analysis to examine 16 semi-structured interviews with inpatients diagnosed with AN, at a specialised eating disorders hospital unit. The study found an overarching theme of relationship ambivalence in connection with sub-themes of patients’ eating disorders, eating disorder co-patients, staff and treatment. Participants’ goals in relationship to their eating disorder and engagement in treatment shaped and were shaped by interactions with other inpatients with AN and staff. Clinical implications for this study and future research directions are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rise of educational action research amongst schools in Singapore can be attributed to the government’s belief that educational research and reform can improve school performance and help Singapore keep pace with the impact of globalization. However, against a backdrop of neo-liberal educational reform where efficiency, accountability and demonstrable outcomes are valued, the underlying intent of the action research projects would seem to be inconsistent with the emancipatory intent normally associated with action research. A systematic review was conducted of 71 action research projects submitted to a local educational conference in 2006. Of concern to us is how action research has been narrowly interpreted and recruited simply as an evaluative tool with the emancipatory potential largely ignored. The paper is theoretically framed by governmentality and performativity to explore the embedded power relations that may “fabricate” the action research projects. The findings and discussions suggest a need for the government, schools and teacher-researchers to reflexively question the current expectation of action research and to be clear about its broader purpose

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional (3D) hierarchical nanoscale architectures comprised of building blocks, with specifically engineered morphologies, are expected to play important roles in the fabrication of 'next generation' microelectronic and optoelectronic devices due to their high surface-to-volume ratio as well as opto-electronic properties. Herein, a series of well-defined 3D hierarchical rutile TiO2 architectures (HRT) were successfully prepared using a facile hydrothermal method without any surfactant or template, simply by changing the concentration of hydrochloric acid used in the synthesis. The production of these materials provides, to the best of our knowledge, the first identified example of a ledgewise growth mechanism in a rutile TiO2 structure. Also for the first time, a Dye-sensitized Solar Cell (DSC) combining a HRT is reported in conjunction with a high-extinction-coefficient metal-free organic sensitizer (D149), achieving a conversion efficiency of 5.5%, which is superior to ones employing P25 (4.5%), comparable to state-of-the-art commercial transparent titania anatase paste (5.8%). Further to this, an overall conversion efficiency 8.6% was achieved when HRT was used as the light scattering layer, a considerable improvement over the commercial transparent/reflector titania anatase paste (7.6%), a significantly smaller gap in performance than has been seen previously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Controlling the morphological structure of titanium dioxide (TiO 2) is crucial for obtaining superior power conversion efficiency for dye-sensitized solar cells. Although the sol-gel-based process has been developed for this purpose, there has been limited success in resisting the aggregation of nanostructured TiO2, which could act as an obstacle for mass production. Herein, we report a simple approach to improve the efficiency of dye-sensitized solar cells (DSSC) by controlling the degree of aggregation and particle surface charge through zeta potential analysis. We found that different aqueous colloidal conditions, i.e., potential of hydrogen (pH), water/titanium alkoxide (titanium isopropoxide) ratio, and surface charge, obviously led to different particle sizes in the range of 10-500 nm. We have also shown that particles prepared under acidic conditions are more effective for DSSC application regarding the modification of surface charges to improve dye loading and electron injection rate properties. Power conversion efficiency of 6.54%, open-circuit voltage of 0.73 V, short-circuit current density of 15.32 mA/cm2, and fill factor of 0.73 were obtained using anatase TiO 2 optimized to 10-20 nm in size, as well as by the use of a compact TiO2 blocking layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Targeted nanomedicines offer a strategy for greatly enhancing accumulation of a therapeutic within a specific tissue in animals. In this study, we report on the comparative targeting efficiency toward prostate-specific membrane antigen (PSMA) of a number of different ligands that are covalently attached by the same chemistry to a polymeric nanocarrier. The targeting ligands included a small molecule (glutamate urea), a peptide ligand, and a monoclonal antibody (J591). A hyperbranched polymer (HBP) was utilized as the nanocarrier and contained a fluorophore for tracking/analysis, whereas the pendant functional chain-ends provided a handle for ligand conjugation. Targeting efficiency of each ligand was assessed in vitro using flow cytometry and confocal microscopy to compare degree of binding and internalization of the HBPs by human prostate cancer (PCa) cell lines with different PSMA expression status (PC3-PIP (PSMA+) and PC3-FLU (PSMA−). The peptide ligand was further investigated in vivo, in which BALB/c nude mice bearing subcutaneous PC3-PIP and PC3-FLU PCa tumors were injected intravenously with the HBP-peptide conjugate and assessed by fluorescence imaging. Enhanced accumulation in the tumor tissue of PC3-PIP compared to PC3-FLU highlighted the applicability of this system as a future imaging and therapeutic delivery vehicle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little is known about the neural mechanisms by which transcranial direct current stimulation (tDCS) impacts on language processing in post-stroke aphasia. This was addressed in a proof-of-principle study that explored the effects of tDCS application in aphasia during simultaneous functional magnetic resonance imaging (fMRI). We employed a single subject, cross-over, sham-tDCS controlled design, and the stimulation was administered to an individualized perilesional stimulation site that was identified by a baseline fMRI scan and a picture naming task. Peak activity during the baseline scan was located in the spared left inferior frontal gyrus and this area was stimulated during a subsequent cross-over phase. tDCS was successfully administered to the target region and anodal- vs. sham-tDCS resulted in selectively increased activity at the stimulation site. Our results thus demonstrate that it is feasible to precisely target an individualized stimulation site in aphasia patients during simultaneous fMRI, which allows assessing the neural mechanisms underlying tDCS application. The functional imaging results of this case report highlight one possible mechanism that may have contributed to beneficial behavioral stimulation effects in previous clinical tDCS trials in aphasia. In the future, this approach will allow identifying distinct patterns of stimulation effects on neural processing in larger cohorts of patients. This may ultimately yield information about the variability of tDCS effects on brain functions in aphasia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considering the growing energy needs and concern for environmental degradation, clean and inexhaustible energy sources, e.g solar energy are receiving greater attention for various applications. The use of solar energy systems for low temperature applications reduces the burden on conventional fossil fuels and has little or no harmful effects on the environment. The performance of a solar system depends to a great extent on the collector used for the conversion of solar radiant energy to thermal energy. A solar evaporatorcollector (SEC) is basically an unglazed flat plate collector where refrigerant, like R134a, is used as the working fluid. As the operating temperature of SEC is very low, it collects energy both from solar irradiation and ambient energy leading to a much higher efficiency than the conventional collectors. The capability of SEC to utilize ambient energy also enables the system to operate at night. Therefore it is not appropriate to use for the evaluation of performance of SEC by conventional efficiency equation where ambient energy and condensation is not considered as energy input in addition to irradiation. In the National University of Singapore, several Solar Assisted Heat Pump (SAHP) systems were built for the evaluation of performance under the metrological condition of Singapore for thermal applications of desalination and SEC was the main component to harness renewable energy. In this paper, the design and performance of SEC are explored. Furthermore, an attempt is made to develop an efficiency equation for SEC and maximum efficiency attained 98% under the meteorological condition of Singapore.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The New Zealand White rabbit has been widely used as a model of limbal stem cell deficiency (LSCD). Current techniques for experimental induction of LSCD utilize caustic chemicals, or organic solvents applied in conjunction with a surgical limbectomy. While generally successful in depleting epithelial progenitors, the depth and severity of injury is difficult to control using chemical-based methods. Moreover, the anterior chamber can be easily perforated while surgically excising the corneal limbus. In the interest of creating a safer and more defined LSCD model, we have therefore evaluated a mechanical debridement technique based upon use of the AlgerBrush II rotating burr. An initial comparison of debridement techniques was conducted in situ using 24 eyes in freshly acquired New Zealand White rabbit cadavers. Techniques for comparison (4 eyes each) included: (1) non-wounded control, (2) surgical limbectomy followed by treatment with 100% (v/v) n-heptanol to remove the corneal epithelium (1-2 minutes), (3) treatment of both limbus and cornea with n-heptanol alone, (4) treatment of both limbus and cornea with 20% (v/v) ethanol (2-3 minutes), (5) a 2.5-mm rounded burr applied to both the limbus and cornea, and (6) a 1-mm pointed burr applied to the limbus, followed by the 2.5-mm rounded burr applied to the cornea. All corneas were excised and processed for histology immediately following debridement. A panel of four assessors subsequently scored the degree of epithelial debridement within the cornea and limbus using masked slides. The 2.5-mm burr most consistently removed the corneal and limbal epithelia. Islands of limbal epithelial cells were occasionally retained following surgical limbectomy/heptanol treatment, or use of the 1-mm burr. Limbal epithelial cells were consistently retained following treatment with either ethanol or n-heptanol alone, with ethanol being the least effective treatment overall. The 2.5-mm burr method was subsequently evaluated in the right eye of 3 live rabbits by weekly clinical assessments (photography and slit lamp examination) for up to 5 weeks, followed by histological analyses (hematoxylin & eosin stain, periodic acid-Schiff stain and immunohistochemistry for keratin 3 and 13). All 3 eyes that had been completely debrided using the 2.5-mm burr displayed symptoms of ocular surface failure as defined by retention of a prominent epithelial defect (~40% of corneal surface at 5 weeks), corneal neovascularization (2 to 3 quadrants), reduced corneal transparency and conjunctivalization of the corneal surface (demonstrated by the presence of goblet cells and/or staining for keratin 13). In conclusion, our findings indicate that the AlgerBrush II rotating burr is an effective method for the establishment of ocular surface failure in New Zealand White rabbits. In particular, we recommend use of the 2.5-mm rotating burr for improved efficiency of epithelial debridement and safety compared to surgical limbectomy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigates factors that impact the energy efficiency of a mining operation. An innovative mathematical framework and solution approach are developed to model, solve and analyse an open-pit coal mine. A case study in South East Queensland is investigated to validate the approach and explore the opportunities for using it to aid long, medium and short term decision makers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current approach for protecting the receiving water environment from urban stormwater pollution is the adoption of structural measures commonly referred to as Water Sensitive Urban Design (WSUD). The treatment efficiency of WSUD measures closely depends on the design of the specific treatment units. As stormwater quality is influenced by rainfall characteristics, the selection of appropriate rainfall events for treatment design is essential to ensure the effectiveness of WSUD systems. Based on extensive field investigations in four urban residential catchments based at Gold Coast, Australia, and computer modelling, this paper details a technically robust approach for the selection of rainfall events for stormwater treatment design using a three-component model. The modelling results confirmed that high intensity-short duration events produce 58.0% of TS load while they only generated 29.1% of total runoff volume. Additionally, rainfall events smaller than 6-month average recurrence interval (ARI) generates a greater cumulative runoff volume (68.4% of the total annual runoff volume) and TS load (68.6% of the TS load exported) than the rainfall events larger than 6-month ARI. The results suggest that for the study catchments, stormwater treatment design could be based on the rainfall which had a mean value of 31 mm/h average intensity and 0.4 h duration. These outcomes also confirmed that selecting smaller ARI rainfall events with high intensity-short duration as the threshold for treatment system design is the most feasible approach since these events cumulatively generate a major portion of the annual pollutant load compared to the other types of events, despite producing a relatively smaller runoff volume. This implies that designs based on small and more frequent rainfall events rather than larger rainfall events would be appropriate in the context of efficiency in treatment performance, cost-effectiveness and possible savings in land area needed.