925 resultados para invoice load process
Resumo:
The management and improvement of business processes are a core topic of the information systems discipline. The persistent demand in corporations within all industry sectors for increased operational efficiency and innovation, an emerging set of established and evaluated methods, tools, and techniques as well as the quickly growing body of academic and professional knowledge are indicative for the standing that Business Process Management (BPM) has nowadays. During the last decades, intensive research has been conducted with respect to the design, implementation, execution, and monitoring of business processes. Comparatively low attention, however, has been paid to questions related to organizational issues such as the adoption, usage, implications, and overall success of BPM approaches, technologies, and initiatives. This research gap motivated us to edit a corresponding special focus issue for the journal BISE/WIRTSCHAFTSINFORMATIK. We are happy that we are able to present a selection of three research papers and a state-of-the-art paper in the scientific section of the issue at hand. As these papers differ in the topics they investigate, the research method they apply, and the theoretical foundations they build on, the diversity within the BPM field becomes evident. The academic papers are complemented by an interview with Phil Gilbert, IBM’s Vice President for Business Process and Decision Management, who reflects on the relationship between business processes and the data flowing through them, the need to establish a process context for decision making, and the calibration of BPM efforts toward executives who see processes as a means to an end, rather than a first-order concept in its own right.
Resumo:
The IEEE Wireless LAN standard has been a true success story by enabling convenient, efficient and low-cost access to broadband networks for both private and professional use. However, the increasing density and uncoordinated operation of wireless access points, combined with constantly growing traffic demands have started hurting the users' quality of experience. On the other hand, the emerging ubiquity of wireless access has placed it at the center of attention for network attacks, which not only raises users' concerns on security but also indirectly affects connection quality due to proactive measures against security attacks. In this work, we introduce an integrated solution to congestion avoidance and attack mitigation problems through cooperation among wireless access points. The proposed solution implements a Partially Observable Markov Decision Process (POMDP) as an intelligent distributed control system. By successfully differentiating resource hampering attacks from overload cases, the control system takes an appropriate action in each detected anomaly case without disturbing the quality of service for end users. The proposed solution is fully implemented on a small-scale testbed, on which we present our observations and demonstrate the effectiveness of the system to detect and alleviate both attack and congestion situations.
Resumo:
A process for the preparation of an amorphous alumino-silicate derivative which involves reacting a solid corresponding starting material with MOH where M is alkali metal or ammonium cation. The solid corresponding starting material may be selected from montmorillonite, kaolin, natural zeolite (e.g., clinoliptolite/heulandite) as well as illite, palygorskite and saponite and additional reactant MX wherein X is halide may be utilized in conjunction with MOH. The invention also includes alumino-silicate derivatives of the general formula M.sub.p Al.sub.q Si.sub.2 O.sub.r (OH).sub.s X.sub.t.uH.sub.2 O as well as alumino-silicate derivatives of the general formula M.sub.p Al.sub.q Si.sub.2 O.sub.r (OH).sub.s.uH.sub.2 O.
Resumo:
In wastewater treatment plants based on anaerobic digestion, supernatant and outflows from sludge dewatering systems contain significantly high amount of ammonium. Generally, these waters are returned to the head of wastewater treatment plant (WWTP), thereby increasing the total nitrogen load of the influent flow. Ammonium from these waters can be recovered and commercially utilised using novel ion-exchange materials. Mackinnon et al. have described an approach for removal and recovery of ammonium from side stream centrate returns obtained from anaerobic digester of a typical WWTP. Most of the ammonium from side streams can potentially be removed, which significantly reduces overall inlet demand at a WWTP. However, the extent of reduction achieved depends on the level of ammonium and flow-rate in the side stream. The exchange efficiency of the ion-exchange material, MesoLite, used in the ammonium recovery process deteriorates with long-term use due to mechanical degradation and use of regenerant. To ensure that a sustainable process is utilised a range of potential applications for this “spent” MesoLite have been evaluated. The primary focus of evaluations has been use of ammonium-loaded MesoLite as a source of nitrogen and growth medium for plants. A MesoLite fertiliser has advantage over soluble fertilisers in that N is held on an insoluble matrix and is gradually released according to exchange equilibria. Many conventional N fertilisers are water-soluble and thus, instantly release all applied N into the soil solution. Loss of nutrient commonly occurs through volatilisation and/or leaching. On average, up to half of the N delivered by a typical soluble fertiliser can be lost through these processes. In this context, use of ammonium-loaded MesoLite as a fertiliser has been evaluated using standard greenhouse and field-based experiments for low fertility soils. Rye grass, a suitable test species for greenhouse trials, was grown in 1kg pots over a period of several weeks with regular irrigation. Nitrogen was applied at a range of rates using a chemical fertiliser as a control and using two MesoLite fertilisers. All other nutrients were applied in adequate amounts. All treatments were replicated three times. Plants were harvested after four weeks, and dry plant mass and N concentrations were determined. At all nitrogen application rates, ammonium-loaded MesoLite produced higher plant mass than plants fertilised by the chemical fertiliser. The lower fertiliser effectiveness of the chemical fertliser is attributed to possible loss of some N through volatilisation. The MesoLite fertilisers did not show any adverse effect on availability of macro and trace nutrients, as shown by lack of deficiency symptoms, dry matter yield and plant analyses. Nitrogen loaded on to MesoLite in the form of exchanged ammonium is readily available to plants while remaining protected from losses via leaching and volatilisation. Spent MesoLite appears to be a suitable and effective fertiliser for a wide range of soils, particularly sandy soils with poor nutrient holding capacity.
Resumo:
Compared to conventional metal-foil strain gauges, nanocomposite piezoresistive strain sensors have demonstrated high strain sensitivity and have been attracting increasing attention in recent years. To fulfil their ultimate success, the performance of vapor growth carbon fiber (VGCF)/epoxy nanocomposite strain sensors subjected to static cyclic loads was evaluated in this work. A strain-equivalent quantity (resistance change ratio) in cantilever beams with intentionally induced notches in bending was evaluated using the conventional metal-foil strain gauges and the VGCF/epoxy nanocomposite sensors. Compared to the metal-foil strain gauges, the nanocomposite sensors are much more sensitive to even slight structural damage. Therefore, it was confirmed that the signal stability, reproducibility, and durability of these nanocomposite sensors are very promising, leading to the present endeavor to apply them for static structural health monitoring.
Resumo:
Widespread adoption by electricity utilities of Non-Conventional Instrument Transformers, such as optical or capacitive transducers, has been limited due to the lack of a standardised interface and multi-vendor interoperability. Low power analogue interfaces are being replaced by IEC 61850 9 2 and IEC 61869 9 digital interfaces that use Ethernet networks for communication. These ‘process bus’ connections achieve significant cost savings by simplifying connections between switchyard and control rooms; however the in-service performance when these standards are employed is largely unknown. The performance of real-time Ethernet networks and time synchronisation was assessed using a scale model of a substation automation system. The test bed was constructed from commercially available timing and protection equipment supplied by a range of vendors. Test protocols have been developed to thoroughly evaluate the performance of Ethernet networks and network based time synchronisation. The suitability of IEEE Std 1588 Precision Time Protocol (PTP) as a synchronising system for sampled values was tested in the steady state and under transient conditions. Similarly, the performance of hardened Ethernet switches designed for substation use was assessed under a range of network operating conditions. This paper presents test methods that use a precision Ethernet capture card to accurately measure PTP and network performance. These methods can be used for product selection and to assess ongoing system performance as substations age. Key findings on the behaviour of multi-function process bus networks are presented. System level tests were performed using a Real Time Digital Simulator and transformer protection relay with sampled value and Generic Object Oriented Substation Events (GOOSE) capability. These include the interactions between sampled values, PTP and GOOSE messages. Our research has demonstrated that several protocols can be used on a shared process bus, even with very high network loads. This should provide confidence that this technology is suitable for transmission substations.
Resumo:
Communication processes are vital in the lifecycle of BPM projects. With this in mind, much research has been performed into facilitating this key component between stakeholders. Amongst the methods used to support this process are personalized process visualisations. In this paper, we review the development of this visualization trend, then, we propose a theoretical analysis framework based upon communication theory. We use this framework to provide theoretical support to the conjecture that 3D virtual worlds are powerful tools for communicating personalised visualisations of processes within a workplace. Meta requirements are then derived and applied, via 3D virtual world functionalities, to generate example visualisations containing personalized aspects, which we believe enhance the process of communcation between analysts and stakeholders in BPM process (re)design activities.
Resumo:
The Beauty Leaf tree (Calophyllum inophyllum) is a potential source of non-edible vegetable oil for producing future generation biodiesel because of its ability to grow in a wide range of climate conditions, easy cultivation, high fruit production rate, and the high oil content in the seed. This plant naturally occurs in the coastal areas of Queensland and the Northern Territory in Australia, and is also widespread in south-east Asia, India and Sri Lanka. Although Beauty Leaf is traditionally used as a source of timber and orientation plant, its potential as a source of second generation biodiesel is yet to be exploited. In this study, the extraction process from the Beauty Leaf oil seed has been optimised in terms of seed preparation, moisture content and oil extraction methods. The two methods that have been considered to extract oil from the seed kernel are mechanical oil extraction using an electric powered screw press, and chemical oil extraction using n-hexane as an oil solvent. The study found that seed preparation has a significant impact on oil yields, especially in the screw press extraction method. Kernels prepared to 15% moisture content provided the highest oil yields for both extraction methods. Mechanical extraction using the screw press can produce oil from correctly prepared product at a low cost, however overall this method is ineffective with relatively low oil yields. Chemical extraction was found to be a very effective method for oil extraction for its consistence performance and high oil yield, but cost of production was relatively higher due to the high cost of solvent. However, a solvent recycle system can be implemented to reduce the production cost of Beauty Leaf biodiesel. The findings of this study are expected to serve as the basis from which industrial scale biodiesel production from Beauty Leaf can be made.
Resumo:
The objective of this research was to investigate the effects of driving conditions and suspension parameters on dynamic load-sharing of longitudinal-connected air suspensions of a tri-axle semi-trailer. A novel nonlinear model of a multi-axle semi-trailer with longitudinal-connected air suspension was formulated based on fluid mechanics and thermodynamics and was validated through test results. The effects of driving conditions and suspension parameters on dynamic load-sharing and road-friendliness of the semi-trailer were analyzed. Simulation results indicate that the road-friendliness metric-DLC (dynamic load coefficient) is not always in accordance with the load-sharing metric-DLSC (dynamic load-sharing coefficient). The effect of employing larger air lines and connectors on the DLSC optimization ratio gives varying results as road roughness increases and as driving speed increases. When the vehicle load reduces, or the static pressure increases, the DLSC optimization ratio declines monotonically. The results also indicate that if the air line diameter is always assumed to be larger than the connector diameter, the influence of air line diameter on load-sharing is more significant than that of the connector.
Resumo:
The conventional mechanical properties of articular cartilage, such as compressive stiffness, have been demonstrated to be limited in their capacity to distinguish intact (visually normal) from degraded cartilage samples. In this paper, we explore the correlation between a new mechanical parameter, namely the reswelling of articular cartilage following unloading from a given compressive load, and the near infrared (NIR) spectrum. The capacity to distinguish mechanically intact from proteoglycan-depleted tissue relative to the "reswelling" characteristic was first established, and the result was subsequently correlated with the NIR spectral data of the respective tissue samples. To achieve this, normal intact and enzymatically degraded samples were subjected to both NIR probing and mechanical compression based on a load-unload-reswelling protocol. The parameter δ(r), characteristic of the osmotic "reswelling" of the matrix after unloading to a constant small load in the order of the osmotic pressure of cartilage, was obtained for the different sample types. Multivariate statistics was employed to determine the degree of correlation between δ(r) and the NIR absorption spectrum of relevant specimens using Partial Least Squared (PLS) regression. The results show a strong relationship (R(2)=95.89%, p<0.0001) between the spectral data and δ(r). This correlation of δ(r) with NIR spectral data suggests the potential for determining the reswelling characteristics non-destructively. It was also observed that δ(r) values bear a significant relationship with the cartilage matrix integrity, indicated by its proteoglycan content, and can therefore differentiate between normal and artificially degraded proteoglycan-depleted cartilage samples. It is therefore argued that the reswelling of cartilage, which is both biochemical (osmotic) and mechanical (hydrostatic pressure) in origin, could be a strong candidate for characterizing the tissue, especially in regions surrounding focal cartilage defects in joints.
Resumo:
The effects of ethanol fumigation on the inter-cycle variability of key in-cylinder pressure parameters in a modern common rail diesel engine have been investigated. Specifically, maximum rate of pressure rise, peak pressure, peak pressure timing and ignition delay were investigated. A new methodology for investigating the start of combustion was also proposed and demonstrated—which is particularly useful with noisy in-cylinder pressure data as it can have a significant effect on the calculation of an accurate net rate of heat release indicator diagram. Inter-cycle variability has been traditionally investigated using the coefficient of variation. However, deeper insight into engine operation is given by presenting the results as kernel density estimates; hence, allowing investigation of otherwise unnoticed phenomena, including: multi-modal and skewed behaviour. This study has found that operation of a common rail diesel engine with high ethanol substitutions (>20% at full load, >30% at three quarter load) results in a significant reduction in ignition delay. Further, this study also concluded that if the engine is operated with absolute air to fuel ratios (mole basis) less than 80, the inter-cycle variability is substantially increased compared to normal operation.
Resumo:
Knowledge Management (KM) is a process that focuses on knowledge-related activities to facilitate knowledge creation, capture, transformation and use, with the ultimate aim of leveraging organisations’ intellectual capital to achieve organisational objectives. The KM process receives input from its context (e.g. internal business environment), and produces output (i.e. knowledge). It is argued that the validity of such knowledge should be justified by business performance. The study, this paper reports on, provides enhanced empirical understanding of such an input-process-output relationship through investigating the interactions among different KM activities in the context of how construction organisations in Hong Kong manage knowledge. To this end, a theoretical framework along with a number of hypotheses are proposed and empirically tested through correlation, regression and path analyses. A questionnaire survey was administered to a sample of construction contractors operating in Hong Kong to facilitate testing the proposed relationships. More than 140 respondents from 99 organisations responded to the survey. The study findings demonstrate that both organisational and technical environments have the potential to predict the intensity of KM activities. Furthermore, different categories of KM activities interact with each other, and collectively they could be used to predict business performance.
Resumo:
Automated process discovery techniques aim at extracting models from information system logs in order to shed light into the business processes supported by these systems. Existing techniques in this space are effective when applied to relatively small or regular logs, but otherwise generate large and spaghetti-like models. In previous work, trace clustering has been applied in an attempt to reduce the size and complexity of automatically discovered process models. The idea is to split the log into clusters and to discover one model per cluster. The result is a collection of process models -- each one representing a variant of the business process -- as opposed to an all-encompassing model. Still, models produced in this way may exhibit unacceptably high complexity. In this setting, this paper presents a two-way divide-and-conquer process discovery technique, wherein the discovered process models are split on the one hand by variants and on the other hand hierarchically by means of subprocess extraction. The proposed technique allows users to set a desired bound for the complexity of the produced models. Experiments on real-life logs show that the technique produces collections of models that are up to 64% smaller than those extracted under the same complexity bounds by applying existing trace clustering techniques.
Resumo:
Recent years have seen an increased uptake of business process management technology in industries. This has resulted in organizations trying to manage large collections of business process models. One of the challenges facing these organizations concerns the retrieval of models from large business process model repositories. For example, in some cases new process models may be derived from existing models, thus finding these models and adapting them may be more effective and less error-prone than developing them from scratch. Since process model repositories may be large, query evaluation may be time consuming. Hence, we investigate the use of indexes to speed up this evaluation process. To make our approach more applicable, we consider the semantic similarity between labels. Experiments are conducted to demonstrate that our approach is efficient.