620 resultados para Network Dynamics
Resumo:
Background The benign reputation of Plasmodium vivax is at odds with the burden and severity of the disease. This reputation, combined with restricted in vitro techniques, has slowed efforts to gain an understanding of the parasite biology and interaction with its human host. Methods A simulation model of the within-host dynamics of P. vivax infection is described, incorporating distinctive characteristics of the parasite such as the preferential invasion of reticulocytes and hypnozoite production. The developed model is fitted using digitized time-series’ from historic neurosyphilis studies, and subsequently validated against summary statistics from a larger study of the same population. The Chesson relapse pattern was used to demonstrate the impact of released hypnozoites. Results The typical pattern for dynamics of the parasite population is a rapid exponential increase in the first 10 days, followed by a gradual decline. Gametocyte counts follow a similar trend, but are approximately two orders of magnitude lower. The model predicts that, on average, an infected naïve host in the absence of treatment becomes infectious 7.9 days post patency and is infectious for a mean of 34.4 days. In the absence of treatment, the effect of hypnozoite release was not apparent as newly released parasites were obscured by the existing infection. Conclusions The results from the model provides useful insights into the dynamics of P. vivax infection in human hosts, in particular the timing of host infectiousness and the role of the hypnozoite in perpetuating infection.
Resumo:
The hippocampus is an anatomically distinct region of the medial temporal lobe that plays a critical role in the formation of declarative memories. Here we show that a computer simulation of simple compartmental cells organized with basic hippocampal connectivity is capable of producing stimulus intensity sensitive wide-band fluctuations of spectral power similar to that seen in real EEG. While previous computational models have been designed to assess the viability of the putative mechanisms of memory storage and retrieval, they have generally been too abstract to allow comparison with empirical data. Furthermore, while the anatomical connectivity and organization of the hippocampus is well defined, many questions regarding the mechanisms that mediate large-scale synaptic integration remain unanswered. For this reason we focus less on the specifics of changing synaptic weights and more on the population dynamics. Spectral power in four distinct frequency bands were derived from simulated field potentials of the computational model and found to depend on the intensity of a random input. The majority of power occurred in the lowest frequency band (3-6 Hz) and was greatest to the lowest intensity stimulus condition (1% maximal stimulus). In contrast, higher frequency bands ranging from 7-45 Hz show an increase in power directly related with an increase in stimulus intensity. This trend continues up to a stimulus level of 15% to 20% of the maximal input, above which power falls dramatically. These results suggest that the relative power of intrinsic network oscillations are dependent upon the level of activation and that above threshold levels all frequencies are damped, perhaps due to over activation of inhibitory interneurons.
Resumo:
What happens to photographic truth when it is thwarted, subverted, stretched and even outwitted? The photography presented in this book provides a range of responses and practices- from the blatant to the exquisitely subtle- and all in the name of fiction. With full-colour images, Photography & Fiction: locating dynamics of practice illustrates and explains the latest issues and ingenious creativity involved in making pictures. The book is the consequence of a significant gathering of photographers, curators, and academics during the 5th Queensland Festival of Photography. Its themes include Fiction-as-Truth, deceptive photography, technology’s fictive potential, as well as the highly personal and inner worlds of human experience.
Resumo:
Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX) and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology.
Resumo:
Underwater wireless sensor networks (UWSNs) have become the seat of researchers' attention recently due to their proficiency to explore underwater areas and design different applications for marine discovery and oceanic surveillance. One of the main objectives of each deployed underwater network is discovering the optimized path over sensor nodes to transmit the monitored data to onshore station. The process of transmitting data consumes energy of each node, while energy is limited in UWSNs. So energy efficiency is a challenge in underwater wireless sensor network. Dual sinks vector based forwarding (DS-VBF) takes both residual energy and location information into consideration as priority factors to discover an optimized routing path to save energy in underwater networks. The modified routing protocol employs dual sinks on the water surface which improves network lifetime. According to deployment of dual sinks, packet delivery ratio and the average end to end delay are enhanced. Based on our simulation results in comparison with VBF, average end to end delay reduced more than 80%, remaining energy increased 10%, and the increment of packet reception ratio was about 70%.
Resumo:
The Internet has been shown to positively enhance internationalisation for SMEs, but scant empirical testing limits our understanding of the explicit impact of the Internet on firm internationalisation. This paper highlights key areas where the integration of the Internet can be leveraged through Internet-related capabilities within the internationalisation of the firm. Specifically, this study investigates how Internet marketing capabilities play a role in altering international information availability, international strategic orientation, and international business network relationships. This study provides evidence, indicating that these key relationships may vary between countries. To examine these key relationships this study utilises draws from data small and medium sized enterprises (SMEs) in three export intensive markets; Australia (215 international SMEs), Chile (204 international SMEs) and Taiwan (130 international SMEs); and tests a conceptual model through structural equation modelling. Results from the data show the impact of Internet marketing capabilities in positively impacting traditional internationalisation elements, which varies between countries. That is, our findings highlight the international business network relationships in Australia and Taiwan are directly impacted by Internet marketing capabilities, but not in Chile. We offer some insight into why we see variance across comparative exporting countries in how they leverage new technological capabilities for internationalisation and firm performance.
Resumo:
Overvoltage and overloading due to high utilization of PVs are the main power quality concerns for future distribution power systems. This paper proposes a distributed control coordination strategy to manage multiple PVs within a network to overcome these issues. PVs reactive power is used to deal with over-voltages and PVs active power curtailment are regulated to avoid overloading. The proposed control structure is used to share the required contribution fairly among PVs, in proportion to their ratings. This approach is examined on a practical distribution network with multiple PVs.
Resumo:
There is a concern that high densities of elephants in southern Africa could lead to the overall reduction of other forms of biodiversity. We present a grid-based model of elephant-savanna dynamics, which differs from previous elephant-vegetation models by accounting for woody plant demographics, tree-grass interactions, stochastic environmental variables (fire and rainfall), and spatial contagion of fire and tree recruitment. The model projects changes in height structure and spatial pattern of trees over periods of centuries. The vegetation component of the model produces long-term tree-grass coexistence, and the emergent fire frequencies match those reported for southern African savannas. Including elephants in the savanna model had the expected effect of reducing woody plant cover, mainly via increased adult tree mortality, although at an elephant density of 1.0 elephant/km2, woody plants still persisted for over a century. We tested three different scenarios in addition to our default assumptions. (1) Reducing mortality of adult trees after elephant use, mimicking a more browsing-tolerant tree species, mitigated the detrimental effect of elephants on the woody population. (2) Coupling germination success (increased seedling recruitment) to elephant browsing further increased tree persistence, and (3) a faster growing woody component allowed some woody plant persistence for at least a century at a density of 3 elephants/km2. Quantitative models of the kind presented here provide a valuable tool for exploring the consequences of management decisions involving the manipulation of elephant population densities. © 2005 by the Ecological Society of America.
Resumo:
Nowadays, demand for automated Gas metal arc welding (GMAW) is growing and consequently need for intelligent systems is increased to ensure the accuracy of the procedure. To date, welding pool geometry has been the most used factor in quality assessment of intelligent welding systems. But, it has recently been found that Mahalanobis Distance (MD) not only can be used for this purpose but also is more efficient. In the present paper, Artificial Neural Networks (ANN) has been used for prediction of MD parameter. However, advantages and disadvantages of other methods have been discussed. The Levenberg–Marquardt algorithm was found to be the most effective algorithm for GMAW process. It is known that the number of neurons plays an important role in optimal network design. In this work, using trial and error method, it has been found that 30 is the optimal number of neurons. The model has been investigated with different number of layers in Multilayer Perceptron (MLP) architecture and has been shown that for the aim of this work the optimal result is obtained when using MLP with one layer. Robustness of the system has been evaluated by adding noise into the input data and studying the effect of the noise in prediction capability of the network. The experiments for this study were conducted in an automated GMAW setup that was integrated with data acquisition system and prepared in a laboratory for welding of steel plate with 12 mm in thickness. The accuracy of the network was evaluated by Root Mean Squared (RMS) error between the measured and the estimated values. The low error value (about 0.008) reflects the good accuracy of the model. Also the comparison of the predicted results by ANN and the test data set showed very good agreement that reveals the predictive power of the model. Therefore, the ANN model offered in here for GMA welding process can be used effectively for prediction goals.
Resumo:
Purpose – In structural, earthquake and aeronautical engineering and mechanical vibration, the solution of dynamic equations for a structure subjected to dynamic loading leads to a high order system of differential equations. The numerical methods are usually used for integration when either there is dealing with discrete data or there is no analytical solution for the equations. Since the numerical methods with more accuracy and stability give more accurate results in structural responses, there is a need to improve the existing methods or develop new ones. The paper aims to discuss these issues. Design/methodology/approach – In this paper, a new time integration method is proposed mathematically and numerically, which is accordingly applied to single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) systems. Finally, the results are compared to the existing methods such as Newmark’s method and closed form solution. Findings – It is concluded that, in the proposed method, the data variance of each set of structural responses such as displacement, velocity, or acceleration in different time steps is less than those in Newmark’s method, and the proposed method is more accurate and stable than Newmark’s method and is capable of analyzing the structure at fewer numbers of iteration or computation cycles, hence less time-consuming. Originality/value – A new mathematical and numerical time integration method is proposed for the computation of structural responses with higher accuracy and stability, lower data variance, and fewer numbers of iterations for computational cycles.
Resumo:
This chapter discusses the methodological aspects and empirical findings of a large-scale, funded project investigating public communication through social media in Australia. The project concentrates on Twitter, but we approach it as representative of broader current trends toward the integration of large datasets and computational methods into media and communication studies in general, and social media scholarship in particular. The research discussed in this chapter aims to empirically describe networks of affiliation and interest in the Australian Twittersphere, while reflecting on the methodological implications and imperatives of ‘big data’ in the humanities. Using custom network crawling technology, we have conducted a snowball crawl of Twitter accounts operated by Australian users to identify more than one million users and their follower/followee relationships, and have mapped their interconnections. In itself, the map provides an overview of the major clusters of densely interlinked users, largely centred on shared topics of interest (from politics through arts to sport) and/or sociodemographic factors (geographic origins, age groups). Our map of the Twittersphere is the first of its kind for the Australian part of the global Twitter network, and also provides a first independent and scholarly estimation of the size of the total Australian Twitter population. In combination with our investigation of participation patterns in specific thematic hashtags, the map also enables us to examine which areas of the underlying follower/followee network are activated in the discussion of specific current topics – allowing new insights into the extent to which particular topics and issues are of interest to specialised niches or to the Australian public more broadly. Specifically, we examine the Twittersphere footprint of dedicated political discussion, under the #auspol hashtag, and compare it with the heightened, broader interest in Australian politics during election campaigns, using #ausvotes; we explore the different patterns of Twitter activity across the map for major television events (the popular competitive cooking show #masterchef, the British #royalwedding, and the annual #stateoforigin Rugby League sporting contest); and we investigate the circulation of links to the articles published by a number of major Australian news organisations across the network. Such analysis, which combines the ‘big data’-informed map and a close reading of individual communicative phenomena, makes it possible to trace the dynamic formation and dissolution of issue publics against the backdrop of longer-term network connections, and the circulation of information across these follower/followee links. Such research sheds light on the communicative dynamics of Twitter as a space for mediated social interaction. Our work demonstrates the possibilities inherent in the current ‘computational turn’ (Berry, 2010) in the digital humanities, as well as adding to the development and critical examination of methodologies for dealing with ‘big data’ (boyd and Crawford, 2011). Out tools and methods for doing Twitter research, released under Creative Commons licences through our project Website, provide the basis for replicable and verifiable digital humanities research on the processes of public communication which take place through this important new social network.