705 resultados para Electric engineering.
Resumo:
Corona discharge is responsible for the small ions found near overhead power lines, and these are capable of modifying the ambient electrical environment such as the dc electric field at ground level (Fews, Wilding et al. 2002). Once produced, small ions quickly attach to aerosol particles in the air, producing ‘large ions’ which are roughly 1 nm to 1 µm in diameter. However, very few studies have reported measurements of ions produced by power lines and its impact on particle charge concentrations. In this present study, the measurements were conducted as a function of normal downwind distance from a 275kV power line for investigating the effect of corona ions on air ions, aerosol particle charge concentration and dc e-filed.
Resumo:
Dual-active bridges (DABs) can be used to deliver isolated and bidirectional power to electric vehicles (EVs) or to the grid in vehicle-to-grid (V2G) applications. However, such a system essentially requires a two-stage power conversion process, which significantly increases the power losses. Furthermore, the poor power factor associated with DAB converters further reduces the efficiency of such systems. This paper proposes a novel matrix converter based resonant DAB converter that requires only a single-stage power conversion process to facilitate isolated bi-directional power transfer between EVs and the grid. The proposed converter comprises a matrix converter based front end linked with an EV side full-bridge converter through a high frequency isolation transformer and a tuned LCL network. A mathematical model, which predicts the behavior of the proposed system, is presented to show that both the magnitude and direction of the power flow can be controlled through either relative phase angle or magnitude modulation of voltages produced by converters. Viability of the proposed concept is verified through simulations. The proposed matrix converter based DAB, with a single power conversion stage, is low in cost, and suites charging and discharging in single or multiple EVs or V2G applications.
Resumo:
Falling sales in Europe and increasing global competition is forcing automotive manufacturers to develop a customer-based approach to differentiate themselves from the similarly technologically-optimised crowd. In spite of this new approach, automotive firms are still firmly entrenched in their reliance upon technology-driven innovation, to design, develop and manufacture their products, placing customer focus on a downstream sales role. However the time-honoured technology-driven approach to vehicle design and manufacture is coming into question, with the increasing importance of accounting for consumer needs pushing automotive engineers to include the user in their designs. The following paper examines the challenges and opportunities for a single global automotive manufacturer that arise in seeking to adopt a user-centred approach to vehicle design amongst technical employees. As part of an embedded case study, engineers from this manufacturer were interviewed in order to gauge the challenges, barriers and opportunities for the adoption of user-centred design tools within the engineering design process. The analysis of these interviews led to the proposal of the need for a new role within automotive manufacturers, the “designeer”, to bridge the divide between designers and engineers and allow the engineering process to transition from a technology-driven to a user- centred approach.
Resumo:
In recent years, electric propulsion systems have increasingly been used in land, sea and air vehicles. The vehicular power systems are usually loaded with tightly regulated power electronic converters which tend to draw constant power. Since the constant power loads (CPLs) impose negative incremental resistance characteristics on the feeder system, they pose a potential threat to the stability of vehicular power systems. This effect becomes more significant in the presence of distribution lines between source and load in large vehicular power systems such as electric ships and more electric aircrafts. System transients such as sudden drop of converter side loads or increase of constant power requirement can cause complete system instability. Most of the existing research work focuses on the modeling and stabilization of DC vehicular power systems with CPLs. Only a few solutions are proposed to stabilize AC vehicular power systems with non-negligible distribution lines and CPLs. Therefore, this paper proposes a novel loop cancellation technique to eliminate constant power instability in AC vehicular power systems with a theoretically unbounded system stability region. Analysis is carried out on system stability with the proposed method and simulation results are presented to validate its effectiveness.
Resumo:
A Three-Phase Nine-Switch Converter (NSC) topology for Doubly Fed Induction Generator in wind energy generation is proposed in this paper. This converter topology was used in various applications such as Hybrid Electric Vehicles and Uninterruptable Power Supplies. In this paper, Nine-Switch Converter is introduced in Doubly Fed Induction Generator in renewable energy application for the first time. It replaces the conventional Back-to-Back Pulse Width Modulated voltage source converter (VSC) which composed of twelve switches in many DFIG applications. Reduction in number of switches is the most beneficial in terms of cost and power switching losses. The operation principle of Nine-Switch Converter using SPWM method is discussed. The resulting NSC performance of rotor side current control, active power and reactive control are compared with Back-to Back voltage source converter performance. DC link voltage regulation using front end converter is also presented. Finally the simulation results of DFIG performances using NSC and Back-to-Back VSC are analyzed and compared.
Resumo:
A probabilistic method is proposed to evaluate voltage quality of grid-connected photovoltaic (PV) power systems. The random behavior of solar irradiation is described in statistical terms and the resulting voltage fluctuation probability distribution is then derived. Reactive power capabilities of the PV generators are then analyzed and their operation under constant power factor mode is examined. By utilizing the reactive power capability of the PV-generators to the full, it is shown that network voltage quality can be greatly enhanced.
Resumo:
This paper describes the results of experiments made in the vicinity of EHV overhead lines to investigate sources of clouds of charged particles using simultaneously-recording arrays of electric field meters to measure direct electric fields produced under ion clouds. E-field measurements, made at one metre above ground level, are correlated with wind speed and direction, and with measurements from ionisation counters and audible corona effects to identify possible positions of sources of corona on adjacent power lines. Measurements made in dry conditions on EHV lines in flat remote locations with no adjacent buildings or large vegetation indicate the presence of discrete ion sources associated with high stress points on some types of line hardware such as connectors and conductor spacers. Faulty line components such as insulators and line fittings are also found to be a possible source of ion clouds.
Resumo:
High voltage powerlines may give rise to corona breakdown, resulting in the release of large concentrations of charged ions into the surrounding environment. These ions quickly attach to aerosols and the resulting charged particles are carried by prevalent winds. This paper describes a study carried out at a site near an overhead double circuit ac transmission voltage powerline to investigate factors that control the rate at which charged particles are produced, and to determine the total particle number concentrations, total particle charge concentrations and vertical dc electric fields in the proximity of the line. Measured mean values of these three parameters at a perpendicular distance of 50m from the line were 1.8 x 103 particle cm-3, 518 ions cm3 and 520 V m-1 respectively. The net electric charge was positive and the electric field was directed downwards. These parameters were correlated with each other and monitored at four different distances from the line. Effects of meteorological parameters such as wind speed and wind direction were also investigated.
Resumo:
A hybrid energy storage system (HESS) consisting of battery and supercapacitor (SC) is proposed for use in a wind farm in order to achieve power dispatchability. In the designed scheme, the rate of charging/discharging powers of the battery is controlled while the faster wind power transients are diverted to the SC. This enhances the lifetime of the battery. Furthermore, by taking into consideration the random nature of the wind power, a statistical design method is developed to determine the capacities of the HESS needed to achieve specified confidence level in the power dispatch. The proposed approach is useful in the planning of the wind farm-HESS scheme and the coordination of the power flows between the battery and SC.
Resumo:
Charge transport properties in organic semiconductors depend strongly on molecular order. Here we demonstrate field-effect transistors where drain current flows through a precisely defined array of nanostripes made of crystalline and highly ordered molecules. The molecular stripes are fabricated across the channel of the transistor by a stamp-assisted deposition of the molecular semiconductors from a solution. As the solvent evaporates, the capillary forces drive the solution to form menisci under the stamp protrusions. The solute precipitates only in the regions where the solution is confined by the menisci once the critical concentration is reached and self-organizes into molecularly ordered stripes 100-200 nm wide and a few monolayers high. The charge mobility measured along the stripes is 2 orders of magnitude larger than the values measured for spin-coated thin films.
Resumo:
In this letter, the performance characteristics of top-gate and dual-gate thin-film transistors (TFTs) with active semiconductor layers consisting of diketopyrrolopyrrole-naphthalene copolymer are described. Optimized top-gate TFTs possess mobilities of up to 1 cm 2 /V s with low contact resistance and reduced hysteresis in air. Dual-gate devices possess higher drive currents as well as improved subthreshold and above threshold characteristics compared to single-gate devices. We also describe the reasons that dual-gate devices result in improved performance. The good stability of this polymer combined with their promising electrical properties make this material a very promising semiconductor for printable electronics.
Resumo:
(Figure Presented) Unusual conductivity effects: Suitably functionalized dendrimers (see picture) are capable of forming truly covalent three-dimensional networks with remarkably high conductivity on electrochemical doping. Depending on the charging level of the electroactive components used as building blocks for the dendrimer core and the perimeter, two separated regimes of electrical conductivity can be observed.
Resumo:
We report the Heck coupling of 2-vinyl-4,5-dicyanoimidazole (vinazene) with selected di- and trihalo aromatics in an effort to prepare linear and branched electron-accepting conjugated materials for application in organic electronics. By selecting the suitable halo-aromatic moiety, it is possible to tune the HOMO - LUMO energy levels, absorption, and emission properties for a specific application. In this regard, materials with strong photoluminescence from blue → green → red are reported that may have potential application in organic light-emitting diodes (OLEDs). Furthermore, derivatives with strong absorption in the visible spectrum, coupled with favorable HOMO-LUMO levels, have been used to prepare promising organic photovoltaic devices (OPVs) when combined with commercially available semiconducting donor polymers.
Resumo:
A power electronics-based buffer is examined in which through control of its PWM converters, the buffer-load combination is driven to operate under either constant power or constant impedance modes. A battery, incorporated within the buffer, provides the energy storage facility to facilitate the necessary power flow control. Real power demand from upstream supply is regulated under fault condition, and the possibility of voltage or network instability is reduced. The proposed buffer is also applied to a wind farm. It is shown that the buffer stabilizes the power contribution from the farm. Based on a battery cost-benefit analysis, a method is developed to determine the optimal level of the power supplied from the wind farm and the corresponding capacity of the battery storage system.
Resumo:
The excellent multi-functional properties of carbon nanotube (CNT) and graphene have enabled them as appealing building blocks to construct 3D carbon-based nanomaterials or nanostructures. The recently reported graphene nanotube hybrid structure (GNHS) is one of the representatives of such nanostructures. This work investigated the relationships between the mechanical properties of the GNHS and its structure basing on large-scale molecular dynamics simulations. It is found that increasing the length of the constituent CNTs, the GNHS will have a higher Young’s modulus and yield strength. Whereas, no strong correlation is found between the number of graphene layers and Young’s modulus and yield strength, though more graphene layers intends to lead to a higher yield strain. In the meanwhile, the presences of multi-wall CNTs are found to greatly strengthen the hybrid structure. Generally, the hybrid structures exhibit a brittle behavior and the failure initiates from the connecting regions between CNT and graphene. More interestingly, affluent formations of monoatomic chains and rings are found at the fracture region. This study provides an in-depth understanding of the mechanical performance of the GNHSs while varying their structures, which will shed lights on the design and also the applications of the carbon-based nanostructures.