701 resultados para human physiology
Resumo:
Cryotherapy is currently used in various clinical, rehabilitative, and sporting settings. However, very little is known regarding the impact of cooling on the microcirculatory response. Objectives: The present study sought to examine the influence of two commonly employed modalities of cryotherapy, whole body cryotherapy (WBC; -110°C) and cold water immersion(CWI; 8±1°C), on skin microcirculation in the mid- thigh region. Methods: The skin area examined was a 3 × 3 cm located between the most anterior aspect of the inguinal fold and the patella. Following 10 minutes of rest, 5 healthy, active males were exposed to either WBC for 3 minutes or CWI for 5 minutes in a randomised order. Volunteers lay supine for five minutes after treatment, in order to monitor the variation of red blood cell (RBC) concentration in the region of interest for a duration of 40 minutes. Microcirculation response was assessed using a non-invasive, portable instrument known as a Tissue Viability imaging system. After a minimum of seven days, the protocol was repeated. Subjective assessment of the volunteer’s thermal comfort and thermal sensation was also recorded. Results: RBC was altered following exposure to both WBC and CWI but appeared to stabilise approximately 35 minutes after treatments. Both WBC and CWI affected thermal sensation (p < 0.05); however no betweengroup differences in thermal comfort or sensation were recorded (p > 0.05). Conclusions: As both WBC and CWI altered RBC, further study is necessary to examine the mechanism for this alteration during whole body cooling.
Resumo:
Digital human modeling (DHM) systems underwent significant development within the last years. They achieved constantly growing importance in the field of ergonomic workplace design, product development, product usability, ergonomic research, ergonomic education, audiovisual marketing and the entertainment industry. They help to design ergonomic products as well as healthy and safe socio-technical work systems. In the domain of scientific DHM systems, no industry specific standard interfaces are defined which could facilitate the exchange of 3D solid body data, anthropometric data or motion data. The focus of this article is to provide an overview of requirements for a reliable data exchange between different DHM systems in order to identify suitable file formats. Examples from the literature are discussed in detail. Methods: As a first step a literature review is conducted on existing studies and file formats for exchanging data between different DHM systems. The found file formats can be structured into different categories: static 3D solid body data exchange, anthropometric data exchange, motion data exchange and comprehensive data exchange. Each file format is discussed and advantages as well as disadvantages for the DHM context are pointed out. Case studies are furthermore presented, which show first approaches to exchange data between DHM systems. Lessons learnt are shortly summarized. Results: A selection of suitable file formats for data exchange between DHM systems is determined from the literature review.
Resumo:
PURPOSE To investigate the utility of using non-contact laser-scanning confocal microscopy (NC-LSCM), compared with the more conventional contact laser-scanning confocal microscopy (C-LSCM), for examining corneal substructures in vivo. METHODS An attempt was made to capture representative images from the tear film and all layers of the cornea of a healthy, 35 year old female, using both NC-LSCM and C-LSCM, on separate days. RESULTS Using NC-LSCM, good quality images were obtained of the tear film, stroma, and a section of endothelium, but the corneal depth of the images of these various substructures could not be ascertained. Using C-LSCM, good quality, full-field images were obtained of the epithelium, subbasal nerve plexus, stroma, and endothelium, and the corneal depth of each of the captured images could be ascertained. CONCLUSIONS NC-LSCM may find general use for clinical examination of the tear film, stroma and endothelium, with the caveat that the depth of stromal images cannot be determined when using this technique. This technique also facilitates image capture of oblique sections of multiple corneal layers. The inability to clearly and consistently image thin corneal substructures - such as the tear film, subbasal nerve plexus and endothelium - is a key limitation of NC-LSCM.
Resumo:
Prolonged intermittent-sprint exercise (i.e., team sports) induce disturbances in skeletal muscle structure and function that are associated with reduced contractile function, a cascade of inflammatory responses, perceptual soreness, and a delayed return to optimal physical performance. In this context, recovery from exercise-induced fatigue is traditionally treated from a peripheral viewpoint, with the regeneration of muscle physiology and other peripheral factors the target of recovery strategies. The direction of this research narrative on post-exercise recovery differs to the increasing emphasis on the complex interaction between both central and peripheral factors regulating exercise intensity during exercise performance. Given the role of the central nervous system (CNS) in motor-unit recruitment during exercise, it too may have an integral role in post-exercise recovery. Indeed, this hypothesis is indirectly supported by an apparent disconnect in time-course changes in physiological and biochemical markers resultant from exercise and the ensuing recovery of exercise performance. Equally, improvements in perceptual recovery, even withstanding the physiological state of recovery, may interact with both feed-forward/feed-back mechanisms to influence subsequent efforts. Considering the research interest afforded to recovery methodologies designed to hasten the return of homeostasis within the muscle, the limited focus on contributors to post-exercise recovery from CNS origins is somewhat surprising. Based on this context, the current review aims to outline the potential contributions of the brain to performance recovery after strenuous exercise.
Resumo:
Human topoisomerase I (htopoI) is an enzyme that up to now was believed to function mainly in the removal of torsional stress generated during transcription and replication. In 1998, it was found that htopoI might play another important role in the cellular response to DNA damage -- the so-called htopoI damage response. Since this initial discovery, many studies have suggested that the htopoI damage response is involved in DNA repair as well as in apoptosis. Here we discuss the earliest as well as the latest results in this field. Combining all of the published and as yet unpublished results, we suggest and discuss a model of how htopoI may function during DNA repair and apoptosis. Furthermore, numerous results show that the htopoI damage response is not a spontaneous event, but is strictly regulated by cellular signalling pathways. We discuss which pathways may be involved and how the htopoI damage response is activated. Although the htopoI damage response was discovered several years ago, research in this area is just beginning. The future will surely bring more clarity regarding the precise mechanism behind the involvement of htopoI in DNA repair and apoptosis, as well as its implications for a broader understanding of how the human organism ensures genomic stability.
Resumo:
Victim/survivors of human trafficking involving partner migration employ diverse help-seeking strategies, both formal and informal, to exit their exploitative situations. Drawing on primary research conducted by Lyneham and Richards (forthcoming), the authors highlight the importance of educating the community and professionals from a wide range of sectors—including health, mental health, child protection, social welfare, social work, domestic violence, migration, legal and law enforcement services—about human trafficking and the help-seeking strategies of victims/survivors in order to support them to leave exploitative situations. Enhancing Australia’s knowledge of victim/survivors’ help-seeking strategies will better inform government and community responses to this crime, improve detection and identification of human trafficking matters and subsequent referral to appropriate victim services.
Resumo:
A new approach for recognizing the iris of the human eye is presented. Zero-crossings of the wavelet transform at various resolution levels are calculated over concentric circles on the iris, and the resulting one-dimensional (1-D) signals are compared with model features using different dissimilarity functions.
Resumo:
A security system based on the recognition of the iris of human eyes using the wavelet transform is presented. The zero-crossings of the wavelet transform are used to extract the unique features obtained from the grey-level profiles of the iris. The recognition process is performed in two stages. The first stage consists of building a one-dimensional representation of the grey-level profiles of the iris, followed by obtaining the wavelet transform zerocrossings of the resulting representation. The second stage is the matching procedure for iris recognition. The proposed approach uses only a few selected intermediate resolution levels for matching, thus making it computationally efficient as well as less sensitive to noise and quantisation errors. A normalisation process is implemented to compensate for size variations due to the possible changes in the camera-to-face distance. The technique has been tested on real images in both noise-free and noisy conditions. The technique is being investigated for real-time implementation, as a stand-alone system, for access control to high-security areas.
Resumo:
Compromised angiogenesis appears to be a major limitation in various suboptimal bone healing situations. Appropriate mechanical stimuli support blood vessel formation in vivo and improve healing outcomes. However, the mechanisms responsible for this association are unclear. To address this question, the paracrine angiogenic potential of early human fracture haematoma and its responsiveness to mechanical loading, as well as angiogenic growth factors involved, were investigated in vitro. Human haematomas were collected from healthy patients undergoing surgery within 72. h after bone fracture. The haematomas were embedded in a fibrin matrix, and cultured in a bioreactor resembling the in vivo conditions of the early phase of bone healing (20 compression, 1. Hz) over 3. days. Conditioned medium (CM) from the bioreactor was then analyzed. The matrices were also incubated in fresh medium for a further 24. h to evaluate the persistence of the effects. Growth factor (GF) concentrations were measured in the CM by ELISAs. In vitro tube formation assays were conducted on Matrigel with the HMEC-1 cell line, with or without inhibition of vascular endothelial growth factor receptor 2 (VEGFR2). Cell numbers were quantified using an MTS test. In vitro endothelial tube formation was enhanced by CM from haematomas, compared to fibrin controls. The angiogenesis regulators, vascular endothelial growth factor (VEGF) and transforming growth factor β1 (TGF-β1), were released into the haematoma CM, but not angiopoietins 1 or 2 (Ang1, 2), basic fibroblast growth factor (bFGF) or platelet-derived growth factor (PDGF). Mechanical stimulation of haematomas, but not fibrin controls, further increased the induction of tube formation by their CM. The mechanically stimulated haematoma matrices retained their elevated pro-angiogenic capacity for 24. h. The pro-angiogenic effect was cancelled by inhibition of VEGFR2 signalling. VEGF concentrations in CM tended to be elevated by mechanical stimulation; this was significant in haematomas from younger, but not from older patients. Other GFs were not mechanically regulated. In conclusion, the paracrine pro-angiogenic capacity of early human haematomas is enhanced by mechanical stimulation. This effect lasts even after removing the mechanical stimulus and appears to be VEGFR2-dependent.
Resumo:
The 'human topoisomerase I (htopoI) damage response' was reported to be triggered by various kinds of DNA lesions. Also, a high and persistent level of htopoI cleavage complexes correlated with apoptosis. In the present study, we demonstrate that DNA damage-independent induction of cell death using colcemid and tumor necrosis factor is also accompanied by a strong htopoI response that correlates with the onset of apoptotic hallmarks. Consequently, these results suggest that htopoI cleavage complex formation may be caused by signaling pathways independent of the kind of cellular stress. Thus, protein interactions or signaling cascades induced by DNA damage or cellular stress might lead to the formation of stabilized cleavage complexes rather than the DNA lesion itself. Finally, we show that p53 not only plays a key role in the regulation of the htopoI response to UV-C irradiation but also to treatment with colcemid.
Resumo:
In this paper we focus specifically on explaining variation in core human values, and suggest that individual differences in values can be partially explained by personality traits and the perceived ability to manage emotions in the self and others (i.e. trait emotional intelligence). A sample of 209 university students was used to test hypotheses regarding several proposed direct and indirect relationships between personality traits, trait emotional intelligence and values. Consistent with the hypotheses, Harm Avoidance and Novelty Seeking were found to directly predict Hedonism, Conformity, and Stimulation. Harm Avoidance was also found to indirectly predict these values through the mediating effects of key subscales of trait emotional intelligence. Novelty Seeking was not found to be an indirect predictor of values. Results have implications for our understanding of the relationship between personality, trait emotional intelligence and values, and suggest a common basis in terms of approach and avoidance pathways.
Resumo:
Previous studies have shown that human topoisomerase I cleavage complexes form as a response to various DNA damages in vivo, the so called human topoisomerase I “damage response”. It was suggested that this damage response may play a role in DNA repair as well as in apoptosis, but only very few investigations have been done and the significance of the damage response still remains unclear. Here we demonstrate that human topoisomerase I cleavage complexes induced by high doses of UV irradiation are highly stable for up to 48 h. Furthermore, we show that human topoisomerase I cleavage complexes correlate with apoptosis. However, at low UV doses the cleavage complex level was very low and the complexes were repaired. Surprisingly, we found that high levels of stable cleavage complexes were not only found in UV-irradiated cells but also in untreated cells that underwent apoptosis. A possible role of human topoisomerase I in apoptosis is discussed.
Resumo:
The anticonvulsant phenytoin (5,5-diphenylhydantoin) provokes a skin rash in 5 to 10% of patients, which heralds the start of an idiosyncratic reaction that may result from covalent modification of normal self proteins by reactive drug metabolites. Phenytoin is metabolized by cytochrome P450 (P450) enzymes primarily to 5-(p-hydroxyphenyl-),5-phenylhydantoin (HPPH), which may be further metabolized to a catechol that spontaneously oxidizes to semiquinone and quinone species that covalently modify proteins. The aim of this study was to determine which P450s catalyze HPPH metabolism to the catechol, proposed to be the final enzymatic step in phenytoin bioactivation. Recombinant human P450s were coexpressed with NADPH-cytochrome P450 reductase in Escherichia coli. Novel bicistronic expression vectors were constructed for P450 2C19 and the three major variants of P450 2C9, i.e., 2C9*1, 2C9*2, and 2C9*3. HPPH metabolism and covalent adduct formation were assessed in parallel. P450 2C19 was the most effective catalyst of HPPH oxidation to the catechol metabolite and was also associated with the highest levels of covalent adduct formation. P450 3A4, 3A5, 3A7, 2C9*1, and 2C9*2 also catalyzed bioactivation of HPPH, but to a lesser extent. Fluorographic analysis showed that the major targets of adduct formation in bacterial membranes were the catalytic P450 forms, as suggested from experiments with human liver microsomes. These results suggest that P450 2C19 and other forms from the 2C and 3A subfamilies may be targets as well as catalysts of drug-protein adduct formation from phenytoin.
Resumo:
One of the hallmarks of progressive renal disease is the development of tubulointerstitial fibrosis. This is frequently preceded by macrophage infiltration, raising the possibility that macrophages relay fibrogenic signals to resident tubulointerstitial cells. The aim of this study was to investigate the potentially fibrogenic role of interleukin-1beta (IL-1beta), a macrophage-derived inflammatory cytokine, on cortical fibroblasts (CFs). Primary cultures of human renal CFs were established and incubated for 24 hours in the presence or absence of IL-1beta. We found that IL-1beta significantly stimulated DNA synthesis (356.7% +/- 39% of control, P <.003), fibronectin secretion (261.8 +/- 11% of control, P <.005), collagen type 1 production, (release of procollagen type 1 C-terminal-peptide, 152.4% +/- 26% of control, P <.005), transforming growth factor-beta (TGF-beta) secretion (211% +/- 37% of control, P <.01), and nitric oxide (NO) production (342.8% +/- 69% of control, P <.002). TGF-beta (1 ng/mL) and the phorbol ester phorbol 12-myristate 13-acetate (PMA, 25 nmol/L) produced fibrogenic effects similar to those of IL-1beta. Neither a NO synthase inhibitor (N(G)-methyl-l-arginine, 1 mmol/L) nor a protein kinase C (PKC) inhibitor (bis-indolylmaleimide 1, 1 micromol/L) altered the enhanced level of fibronectin secretion or DNA synthesis seen in response to IL-1beta treatment. However, addition of a TGF-beta-neutralizing antibody significantly reduced IL-1beta-induced fibronectin secretion (IL-1beta + IgG, 262% +/- 72% vs IL-1beta + alphaTGF-beta 156% +/- 14%, P <.02), collagen type 1 production (IL-1beta + IgG, 176% +/- 28% vs IL-1beta + alphaTGF-beta, 120% +/- 14%, P <.005) and abrogated IL-1beta-induced DNA synthesis (245% +/- 49% vs 105% +/- 21%, P <.005). IL-1beta significantly stimulated CF DNA synthesis and production of fibronectin, collagen type 1, TGFbeta, and NO. The fibrogenic and proliferative action of IL-1beta on CF appears not to involve activation of PKC or production of NO but is at least partly TGFbeta-dependent.
Resumo:
BACKGROUND Tubulointerstitial lesions, characterized by tubular injury, interstitial fibrosis and the appearance of myofibroblasts, are the strongest predictors of the degree and progression of chronic renal failure. These lesions are typically preceded by macrophage infiltration of the tubulointerstitium, raising the possibility that these inflammatory cells promote progressive renal disease through fibrogenic actions on resident tubulointerstitial cells. The aim of the present study, therefore, was to investigate the potentially fibrogenic mechanisms of interleukin-1beta (IL-1beta), a macrophage-derived pro-inflammatory cytokine, on human proximal tubule cells (PTC). METHODS Confluent, quiescent, passage 2 PTC were established in primary culture from histologically normal segments of human renal cortex (N = 11) and then incubated in serum- and hormone-free media supplemented with either IL-1beta (0 to 4 ng/mL) or vehicle (control). RESULTS IL-1beta significantly enhanced fibronectin secretion by up to fourfold in a time- and concentration-dependent fashion. This was accompanied by significant (2.5- to 6-fold) increases in alpha-smooth muscle actin (alpha-SMA) expression, transforming growth factor beta (TGF-beta1) secretion, nitric oxide (NO) production, NO synthase 2 (NOS2) mRNA and lactate dehydrogenase (LDH) release. Cell proliferation was dose-dependently suppressed by IL-1beta. NG-methyl-l-arginine (L-NMMA; 1 mmol/L), a specific inhibitor of NOS, blocked NO production but did not alter basal or IL-1beta-stimulated fibronectin secretion. In contrast, a pan-specific TGF-beta neutralizing antibody significantly blocked the effects of IL-1beta on PTC fibronectin secretion (IL-1beta, 268.1 +/- 30.6 vs. IL-1beta+alphaTGF-beta 157.9 +/- 14.4%, of control values, P < 0.001) and DNA synthesis (IL-1beta 81.0 +/- 6.7% vs. IL-1beta+alphaTGF-beta 93.4 +/- 2.1%, of control values, P < 0.01). CONCLUSION IL-1beta acts on human PTC to suppress cell proliferation, enhance fibronectin production and promote alpha-smooth muscle actin expression. These actions appear to be mediated by a TGF-beta1 dependent mechanism and are independent of nitric oxide release.