696 resultados para correlation modelling
Resumo:
Ecological studies are based on characteristics of groups of individuals, which are common in various disciplines including epidemiology. It is of great interest for epidemiologists to study the geographical variation of a disease by accounting for the positive spatial dependence between neighbouring areas. However, the choice of scale of the spatial correlation requires much attention. In view of a lack of studies in this area, this study aims to investigate the impact of differing definitions of geographical scales using a multilevel model. We propose a new approach -- the grid-based partitions and compare it with the popular census region approach. Unexplained geographical variation is accounted for via area-specific unstructured random effects and spatially structured random effects specified as an intrinsic conditional autoregressive process. Using grid-based modelling of random effects in contrast to the census region approach, we illustrate conditions where improvements are observed in the estimation of the linear predictor, random effects, parameters, and the identification of the distribution of residual risk and the aggregate risk in a study region. The study has found that grid-based modelling is a valuable approach for spatially sparse data while the SLA-based and grid-based approaches perform equally well for spatially dense data.
Resumo:
The excellent multi-functional properties of carbon nanotube (CNT) and graphene have enabled them as appealing building blocks to construct 3D carbon-based nanomaterials or nanostructures. The recently reported graphene nanotube hybrid structure (GNHS) is one of the representatives of such nanostructures. This work investigated the relationships between the mechanical properties of the GNHS and its structure basing on large-scale molecular dynamics simulations. It is found that increasing the length of the constituent CNTs, the GNHS will have a higher Young’s modulus and yield strength. Whereas, no strong correlation is found between the number of graphene layers and Young’s modulus and yield strength, though more graphene layers intends to lead to a higher yield strain. In the meanwhile, the presences of multi-wall CNTs are found to greatly strengthen the hybrid structure. Generally, the hybrid structures exhibit a brittle behavior and the failure initiates from the connecting regions between CNT and graphene. More interestingly, affluent formations of monoatomic chains and rings are found at the fracture region. This study provides an in-depth understanding of the mechanical performance of the GNHSs while varying their structures, which will shed lights on the design and also the applications of the carbon-based nanostructures.
Resumo:
Stormwater pollution is linked to stream ecosystem degradation. In predicting stormwater pollution, various types of modelling techniques are adopted. The accuracy of predictions provided by these models depends on the data quality, appropriate estimation of model parameters, and the validation undertaken. It is well understood that available water quality datasets in urban areas span only relatively short time scales unlike water quantity data, which limits the applicability of the developed models in engineering and ecological assessment of urban waterways. This paper presents the application of leave-one-out (LOO) and Monte Carlo cross validation (MCCV) procedures in a Monte Carlo framework for the validation and estimation of uncertainty associated with pollutant wash-off when models are developed using a limited dataset. It was found that the application of MCCV is likely to result in a more realistic measure of model coefficients than LOO. Most importantly, MCCV and LOO were found to be effective in model validation when dealing with a small sample size which hinders detailed model validation and can undermine the effectiveness of stormwater quality management strategies.
Resumo:
Micrometre-sized MgB2 crystals of varying quality, synthesized at low temperature and autogeneous pressure, are compared using a combination of Raman and Infra-Red (IR) spectroscopy. These data, which include new peak positions in both spectroscopies for high quality MgB2, are interpreted using DFT calculations on phonon behaviour for symmetry-related structures. Raman and IR activity additional to that predicted by point group analyses of the P6/mmm symmetry are detected. These additional peaks, as well as the overall shapes of calculated phonon dispersion (PD) models are explained by assuming a double super-lattice, consistent with a lower symmetry structure for MgB2. A 2x super-lattice in the c-direction allows a simple correlation of the pair breaking energy and the superconducting gap by activation of corresponding acoustic frequencies. A consistent physical interpretation of these spectra is obtained when the position of a phonon anomaly defines a super-lattice modulation in the a-b plane.
Resumo:
The mining industry faces three long term strategic risks in relation to its water and energy use: 1) securing enough water and energy to meet increased production; 2) reducing water use, energy consumption and emissions due to social, environmental and economic pressures; and 3) understanding the links between water and energy, so that an improvement in one area does not create an adverse effect in another. This project helps the industry analyse these risks by creating a hierarchical systems model (HSM) that represents the water and energy interactions on a sub-site, site and regional scales; which is coupled with a flexible risk framework. The HSM consists of: components that represent sources of water and energy; activities that use water and energy and off-site destinations of water and produced emissions. It can also represent more complex components on a site, with inbuilt examples including tailings dams and water treatment plants. The HSM also allows multiple sites and other infrastructure to be connected together to explore regional water and energy interactions. By representing water and energy as a single interconnected system the HSM can explore tradeoffs and synergies. For example, on a synthetic case study, which represents a typical site, simulations suggested that while a synergy in terms of water use and energy use could be made when chemical additives were used to enhance dust suppression, there were trade-offs when either thickened tailings or dry processing were used. On a regional scale, the HSM was used to simulate various scenarios, including: mines only withdrawing water when needed; achieving economics-of-scale through use of a single centralised treatment plant rather than smaller decentralised treatment plants; and capturing of fugitive emissions for energy generation. The HSM also includes an integrated risk framework for interpreting model output, so that onsite and off-site impacts of various water and energy management strategies can be compared in a managerial context. The case studies in this report explored company, social and environmental risks for scenarios of regional water scarcity, unregulated saline discharge, and the use of plantation forestry to offset carbon emissions. The HSM was able to represent the non-linear causal relationship at the regional scale, such as the forestry scheme offsetting a small percentage of carbon emissions but causing severe regional water shortages. The HSM software developed in this project will be released as an open source tool to allow industry personnel to easily and inexpensively quantify and explore the links between water use, energy use, and carbon emissions. The tool can be easily adapted to represent specific sites or regions. Case studies conducted in this project highlighted the potential complexity of these links between water, energy, and carbon emissions, as well as the significance of the cumulative effects of these links over time. A deeper understanding of these links is vital for the mining industry in order to progress to more sustainable operations, and the HSM provides an accessible, robust framework for investigating these links.
Resumo:
Quantum-like models can be fruitfully used to model attitude change in a social context. Next steps require data, and higher dimensional models. Here, we discuss an exploratory study that demonstrates an order effect when three question sets about Climate Beliefs, Political Affiliation and Attitudes Towards Science are presented in different orders within a larger study of n=533 subjects. A quantum-like model seems possible, and we propose a new experiment which could be used to test between three possible models for this scenario.
Resumo:
Various forms of hydrogenated graphene have been produced to date by several groups, while the synthesis of pure graphane has not been achieved yet. The study of the interface between graphane, in all its possible hydrogenation configurations, and catalyst metal surfaces can be pivotal to assess the feasibility of direct CVD growth methods for this material. We investigated the adhesion of graphane to a Cu(111) surface by adopting the vdW-DF2-C09 exchange-correlation functional, which is able to describe dispersion forces. The results are further compared with the PBE and the LDA exchange-correlation functionals. We calculated the most stable geometrical configurations of the slab/graphane interface and evaluated how graphane's geometrical parameters are modified. We show that dispersion forces play an important role in the slab/graphane adhesion. Band structure calculations demonstrated that in the presence of the interaction with copper, the band gap of graphane is not only preserved, but also enlarged, and this increase can be attributed to the electronic charge accumulated at the interface. We calculated a substantial energy barrier at the interface, suggesting that CVD graphane films might act as reliable and stable insulating thin coatings, or also be used to form compound layers in conjunction with metals and semiconductors.
Resumo:
Despite the prominent use of the pubic symphysis for age estimation in forensic anthropology, little has been documented regarding the quantitative morphological and micro-architectural changes of this surface. Specifically, utilising post-mortem computed tomography data from a large, contemporary Australian adult population, this study aimed to evaluate sexual dimorphism in the morphology and bone composition of the symphyseal surface; and temporal characterisation of the pubic symphysis in individuals of advancing age. The sample consisted of multi-slice computed tomography (MSCT) scans of the pubic symphysis(slice thickness: 0.5 mm, overlap: 0.1 mm) of 200 individuals of Caucasian ancestry aged 15–70 years, obtained in 2011. Surface rendering reconstruction of the symphyseal surface was conducted in OsiriX1 (v.4.1) and quantitative analyses in Rapidform XOSTM and OsteomeasureTM. Morphometric variables including inter-pubic distance, surface area, circumference, maximum height and width of the symphyseal surface and micro-architectural assessment of cortical and trabecular bone compositions were quantified using novel automated engineering software capabilities. The major results of this study are correlated with the macroscopic ossification and degeneration pattern of the symphyseal surface, demonstrating significant age-related changes in the morphometric and bone tissue variables between 15 and 70 years. Regardless of sex, the overall dimensions of the symphyseal surface increased with age, coupled with a decrease in bone mass in the trabecular and cortical bone compartments. Significant differences between the ventral, dorsal and medial cortical surfaces were observed, which may be correlated to bone formation activity dependent on muscle activity and ligamentous attachments. Our study demonstrates significant sexual dimorphism at this site, with males exhibiting greater surface dimensions than females. These baseline results provide a detailed insight into the changes in the structure of the pubic symphysis with ageing and sexually dimorphic features associated with the cortical and trabecular bone profiles.
Resumo:
Representation of facial expressions using continuous dimensions has shown to be inherently more expressive and psychologically meaningful than using categorized emotions, and thus has gained increasing attention over recent years. Many sub-problems have arisen in this new field that remain only partially understood. A comparison of the regression performance of different texture and geometric features and investigation of the correlations between continuous dimensional axes and basic categorized emotions are two of these. This paper presents empirical studies addressing these problems, and it reports results from an evaluation of different methods for detecting spontaneous facial expressions within the arousal-valence dimensional space (AV). The evaluation compares the performance of texture features (SIFT, Gabor, LBP) against geometric features (FAP-based distances), and the fusion of the two. It also compares the prediction of arousal and valence, obtained using the best fusion method, to the corresponding ground truths. Spatial distribution, shift, similarity, and correlation are considered for the six basic categorized emotions (i.e. anger, disgust, fear, happiness, sadness, surprise). Using the NVIE database, results show that the fusion of LBP and FAP features performs the best. The results from the NVIE and FEEDTUM databases reveal novel findings about the correlations of arousal and valence dimensions to each of six basic emotion categories.
Resumo:
Purpose Food refusal is part of normal toddler development due to an innate ability to self-regulate energy intake and the onset of neophobia. For parents, this ‘fussy’ stage causes great concern, prompting use of coercive feeding practices which ignore a child’s own hunger and satiety cues, promoting overeating and overweight. This analysis defines characteristics of the ‘good eater’ using latent variable structural equation modelling and the relationship with maternal perception of her child as a fussy eater. Methods Mothers in the control group of the NOURISH and South Australian Infants Dietary Intake studies (n=332) completed a self-administered questionnaire - when child was age 12-16 months - describing refusal of familiar and unfamiliar foods and maternal perception as fussy/not fussy. Weight-for-age z-score (WAZ) was derived from weight measured by study staff. Questionnaire items and WAZ were combined in AMOS to represent the latent variable the ‘good eater’. Results/findings Mean age(sd) of children was 13.8(1.3) months, mean WAZ(sd), .58(.86) and 49% were male. The ‘good eater’ was represented by higher WAZ, a child that hardly ever refuses food, hardly ever refuses familiar food, and willing to eat unfamiliar foods (x2/df=2.80, GFI=.98, RMSEA=.07(.03-.12), CFI=.96). The ‘good eater’ was inversely associated with maternal perception of her child as a fussy eater (β=-.64, p<.05). Conclusions Toddlers displaying characteristics of a ‘good eater’ are not perceived as fussy, but these characteristics, especially higher WAZ, may be undesirable in the context of obesity prevention. Clinicians can promote food refusal as normal and even desirable in healthy young children.
Resumo:
Enhanced catalytic performance of zeoltes via the plasmonic effect of gold nanoparticles has been discovered to be closely correlated with the molecular polarity of reactants. The intensified polarised electrostatic field of Na+ in NaY plays a critical role in stretching the C=O bond of aldehydes to improve the reaction rate.
Resumo:
The development of offshore oil and gas fields require the placement of different equipment on the sea floor. This is done by deploying the equipment from vessels operating in dynamic positioning on the surface. The deployment operation has different phases, and in higher sea states, it may require wave-load synchronization, when the load is going through the splash zone, and heave compensation when the load is close to the sea floor. In this paper, we analyse the performance of a particular type of hardware operating in a heave compensation mode. We derive a comprehensive model, analyse limits of performance and evaluate a control strategy.
Resumo:
Observations conducted by researchers revealed that the group interaction within crowds is a common phenomenon and has great influence on pedestrian behaviour. However, most research currently undertaken by various researchers failed to consider the group dynamics when developing pedestrian flow models. This paper presented a critical review of pedestrian models that incorporates group behaviour. Models reviewed in this paper are mainly created by microscopic modelling approaches such as social force, cellular automata, and agent-based method. The purpose of this literature review is to improve the understanding of group dynamics among pedestrians and highlight the need for considering group dynamics when developing pedestrian simulation models.