567 resultados para computer algorithm
Resumo:
The purpose of this paper is to describe a new decomposition construction for perfect secret sharing schemes with graph access structures. The previous decomposition construction proposed by Stinson is a recursive method that uses small secret sharing schemes as building blocks in the construction of larger schemes. When the Stinson method is applied to the graph access structures, the number of such “small” schemes is typically exponential in the number of the participants, resulting in an exponential algorithm. Our method has the same flavor as the Stinson decomposition construction; however, the linear programming problem involved in the construction is formulated in such a way that the number of “small” schemes is polynomial in the size of the participants, which in turn gives rise to a polynomial time construction. We also show that if we apply the Stinson construction to the “small” schemes arising from our new construction, both have the same information rate.
Resumo:
We present a novel approach for multi-object detection in aerial videos based on tracking. The proposed method mainly involves three steps. Firstly, the spatial-temporal saliency is employed to detect moving objects. Secondly, the detected objects are tracked by mean shift in the subsequent frames. Finally, the saliency results are fused with the weight map generated by tracking to get refined detection results, and in turn the modified detection results are used to update the tracking models. The proposed algorithm is evaluated on VIVID aerial videos, and the results show that our approach can reliably detect moving objects even in challenging situations. Meanwhile, the proposed method can process videos in real time, without the effect of time delay.
Resumo:
RC4(n, m) is a stream cipher based on RC4 and is designed by G. Gong et al. It can be seen as a generalization of the famous RC4 stream cipher designed by Ron Rivest. The authors of RC4(n, m) claim that the cipher resists all the attacks that are successful against the original RC4. The paper reveals cryptographic weaknesses of the RC4(n, m) stream cipher. We develop two attacks. The first one is based on non-randomness of internal state and allows to distinguish it from a truly random cipher by an algorithm that has access to 24·n bits of the keystream. The second attack exploits low diffusion of bits in the KSA and PRGA algorithms and recovers all bytes of the secret key. This attack works only if the initial value of the cipher can be manipulated. Apart from the secret key, the cipher uses two other inputs, namely, initial value and initial vector. Although these inputs are fixed in the cipher specification, some applications may allow the inputs to be under the attacker control. Assuming that the attacker can control the initial value, we show a distinguisher for the cipher and a secret key recovery attack that for the L-bit secret key, is able to recover it with about (L/n) · 2n steps. The attack has been implemented on a standard PC and can reconstruct the secret key of RC(8, 32) in less than a second.
Resumo:
Rakaposhi is a synchronous stream cipher, which uses three main components: a non-linear feedback shift register (NLFSR), a dynamic linear feedback shift register (DLFSR) and a non-linear filtering function (NLF). NLFSR consists of 128 bits and is initialised by the secret key K. DLFSR holds 192 bits and is initialised by an initial vector (IV). NLF takes 8-bit inputs and returns a single output bit. The work identifies weaknesses and properties of the cipher. The main observation is that the initialisation procedure has the so-called sliding property. The property can be used to launch distinguishing and key recovery attacks. The distinguisher needs four observations of the related (K,IV) pairs. The key recovery algorithm allows to discover the secret key K after observing 29 pairs of (K,IV). Based on the proposed related-key attack, the number of related (K,IV) pairs is 2(128 + 192)/4 pairs. Further the cipher is studied when the registers enter short cycles. When NLFSR is set to all ones, then the cipher degenerates to a linear feedback shift register with a non-linear filter. Consequently, the initial state (and Secret Key and IV) can be recovered with complexity 263.87. If DLFSR is set to all zeros, then NLF reduces to a low non-linearity filter function. As the result, the cipher is insecure allowing the adversary to distinguish it from a random cipher after 217 observations of keystream bits. There is also the key recovery algorithm that allows to find the secret key with complexity 2 54.
Resumo:
RC4-Based Hash Function is a new proposed hash function based on RC4 stream cipher for ultra low power devices. In this paper, we analyse the security of the function against collision attack. It is shown that the attacker can find collision and multi-collision messages with complexity only 6 compress function operations and negligible memory with time complexity 2 13. In addition, we show the hashing algorithm can be distinguishable from a truly random sequence with probability close to one.
Resumo:
Disjoint top-view networked cameras are among the most commonly utilized networks in many applications. One of the open questions for these cameras' study is the computation of extrinsic parameters (positions and orientations), named extrinsic calibration or localization of cameras. Current approaches either rely on strict assumptions of the object motion for accurate results or fail to provide results of high accuracy without the requirement of the object motion. To address these shortcomings, we present a location-constrained maximum a posteriori (LMAP) approach by applying known locations in the surveillance area, some of which would be passed by the object opportunistically. The LMAP approach formulates the problem as a joint inference of the extrinsic parameters and object trajectory based on the cameras' observations and the known locations. In addition, a new task-oriented evaluation metric, named MABR (the Maximum value of All image points' Back-projected localization errors' L2 norms Relative to the area of field of view), is presented to assess the quality of the calibration results in an indoor object tracking context. Finally, results herein demonstrate the superior performance of the proposed method over the state-of-the-art algorithm based on the presented MABR and classical evaluation metric in simulations and real experiments.
Resumo:
In order to minimize the number of load shedding in a Microgrid during autonomous operation, islanded neighbour microgrids can be interconnected if they are on a self-healing network and an extra generation capacity is available in Distributed Energy Resources (DER) in one of the microgrids. In this way, the total load in the system of interconnected microgrids can be shared by all the DERs within these microgrids. However, for this purpose, carefully designed self-healing and supply restoration control algorithm, protection systems and communication infrastructure are required at the network and microgrid levels. In this chapter, first a hierarchical control structure is discussed for interconnecting the neighbour autonomous microgrids where the introduced primary control level is the main focus. Through the developed primary control level, it demonstrates how the parallel DERs in the system of multiple interconnected autonomous microgrids can properly share the load in the system. This controller is designed such that the converter-interfaced DERs operate in a voltage-controlled mode following a decentralized power sharing algorithm based on droop control. The switching in the converters is controlled using a linear quadratic regulator based state feedback which is more stable than conventional proportional integrator controllers and this prevents instability among parallel DERs when two microgrids are interconnected. The efficacy of the primary control level of DERs in the system of multiple interconnected autonomous microgrids is validated through simulations considering detailed dynamic models of DERs and converters.
Resumo:
Recently, botnet, a network of compromised computers, has been recognized as the biggest threat to the Internet. The bots in a botnet communicate with the botnet owner via a communication channel called Command and Control (C & C) channel. There are three main C & C channels: Internet Relay Chat (IRC), Peer-to-Peer (P2P) and web-based protocols. By exploiting the flexibility of the Web 2.0 technology, the web-based botnet has reached a new level of sophistication. In August 2009, such botnet was found on Twitter, one of the most popular Web 2.0 services. In this paper, we will describe a new type of botnet that uses Web 2.0 service as a C & C channel and a temporary storage for their stolen information. We will then propose a novel approach to thwart this type of attack. Our method applies a unique identifier of the computer, an encryption algorithm with session keys and a CAPTCHA verification.
Resumo:
We analyse the security of the cryptographic hash function LAKE-256 proposed at FSE 2008 by Aumasson, Meier and Phan. By exploiting non-injectivity of some of the building primitives of LAKE, we show three different collision and near-collision attacks on the compression function. The first attack uses differences in the chaining values and the block counter and finds collisions with complexity 233. The second attack utilizes differences in the chaining values and salt and yields collisions with complexity 242. The final attack uses differences only in the chaining values to yield near-collisions with complexity 299. All our attacks are independent of the number of rounds in the compression function. We illustrate the first two attacks by showing examples of collisions and near-collisions.
Resumo:
This study was a step forward in modeling, simulation and microcontroller implementation of a high performance control algorithm for the motor of a blood pump. The rotor angle is sensed using three Hall effect sensors and an algorithm is developed to obtain better angular resolution from the three signals for better discrete-time updates of the controller. The performance of the system was evaluated in terms of actual and reference speeds, stator currents and power consumption over a range of reference speeds up to 4000 revolutions per minute. The use of fewer low cost Hall effect sensors compared to expensive high resolution sensors could reduce the cost of blood pumps for total artificial hearts.
Resumo:
Dragon stream cipher is one of the focus ciphers which have reached Phase 2 of the eSTREAMproject. In this paper, we present a new method of building a linear distinguisher for Dragon. The distinguisher is constructed by exploiting the biases of two S-boxes and the modular addition which are basic components of the nonlinear function F. The bias of the distinguisher is estimated to be around 2−75.32 which is better than the bias of the distinguisher presented by Englund and Maximov. We have shown that Dragon is distinguishable from a random cipher by using around 2150.6 keystream words and 259 memory. In addition, we present a very efficient algorithm for computing the bias of linear approximation of modular addition.
Resumo:
This paper presents a computational method for eliminating severe stress concentration at the unsupported railhead ends in rail joints through innovative shape optimization of the contact zone, which is complex due to near field nonlinear contact. With a view to minimizing the computational efforts, hybrid genetic algorithm method coupled with parametric finite element has been developed and compared with the traditional genetic algorithm (GA). The shape of railhead top surface where the wheel contacts nonlinearly was optimized using the hybridized GA method. Comparative study of the optimal result and the search efficiency between the traditional and hybrid GA methods has shown that the hybridized GA provides the optimal shape in fewer computational cycles without losing accuracy. The method will be beneficial to solving complex engineering problems involving contact nonlinearity.
Resumo:
A dynamic accumulator is an algorithm, which gathers together a large set of elements into a constant-size value such that for a given element accumulated, there is a witness confirming that the element was indeed included into the value, with a property that accumulated elements can be dynamically added and deleted into/from the original set such that the cost of an addition or deletion operation is independent of the number of accumulated elements. Although the first accumulator was presented ten years ago, there is still no standard formal definition of accumulators. In this paper, we generalize formal definitions for accumulators, formulate a security game for dynamic accumulators so-called Chosen Element Attack (CEA), and propose a new dynamic accumulator for batch updates based on the Paillier cryptosystem. Our construction makes a batch of update operations at unit cost. We prove its security under the extended strong RSA (es-RSA) assumption
Resumo:
This paper presents a robust place recognition algorithm for mobile robots that can be used for planning and navigation tasks. The proposed framework combines nonlinear dimensionality reduction, nonlinear regression under noise, and Bayesian learning to create consistent probabilistic representations of places from images. These generative models are incrementally learnt from very small training sets and used for multi-class place recognition. Recognition can be performed in near real-time and accounts for complexity such as changes in illumination, occlusions, blurring and moving objects. The algorithm was tested with a mobile robot in indoor and outdoor environments with sequences of 1579 and 3820 images, respectively. This framework has several potential applications such as map building, autonomous navigation, search-rescue tasks and context recognition.
Resumo:
In this study, a machine learning technique called anomaly detection is employed for wind turbine bearing fault detection. Basically, the anomaly detection algorithm is used to recognize the presence of unusual and potentially faulty data in a dataset, which contains two phases: a training phase and a testing phase. Two bearing datasets were used to validate the proposed technique, fault-seeded bearing from a test rig located at Case Western Reserve University to validate the accuracy of the anomaly detection method, and a test to failure data of bearings from the NSF I/UCR Center for Intelligent Maintenance Systems (IMS). The latter data set was used to compare anomaly detection with SVM, a previously well-known applied method, in rapidly finding the incipient faults.