555 resultados para Structural differences
Resumo:
Layered materials exhibit intriguing electronic characteristics and the search for new types of two-dimensional (2D) structures is of importance for future device fabrication. Using state-of-art first principle calculations, we identify and characterize the structural and electronic properties of two 2D layered arsenic materials, namely, arsenic and its alloy AsSb. The stable 2D structural configuration of arsenic is confirmed to be the low-buckled two-dimensional hexagonal structure by phonon and binding energy calculations. The monolayer exhibits indirect semiconducting properties with gap around 1.5 eV (corrected to 2.2 eV by hybrid function), which can be modulated into a direct semiconductor within a small amount of tensile strain. These semiconducting properties are preserved when cutting into 1D nanoribbons, but the band gap is edge dependent. It is interesting to find that an indirect to direct gap transition can be achieved under strain modulation of the armchair ribbon. Essentially the same phenomena can be found in layered AsSb, except a weak Rashba induced band splitting is present in AsSb due to the nonsymmetric structure and spin orbit coupling. When an additional layer is added on the top, a semiconductor–metal transition will occur. The findings here broaden the family of 2D materials beyond graphene and transition metal dichalcogenides and provide useful information for experimental fabrication of new layered materials with possible application in optoelectronics.
Resumo:
Many, but not all, of the current 21 serotypes of Yersinia pseudotuberculosis have been investigated with regard to the chemical structures of their O-specific polysaccharide (OPS) and the genetic basis of their biosynthesis. Completion of the genetics and structures of the remaining serotypes will enhance our understanding of the emerging relationship between genetics and structures within this species. Here, we present a structural and genetic analysis of the Y. pseudotuberculosis serotype O:1c OPS. Our results showed that this OPS has the same backbone as Y. pseudotuberculosis O:2b, but with a 3,6-dideoxy-D-ribo-hexofuranose (paratofuranose, Parf) side-branch instead of a 3,6-dideoxy-D-xylo-hexopyranose (abequopyranose, Abep). The 3'-end of the gene cluster is the same as for O:2b and has the genes for synthesis of the backbone and for processing the completed repeat unit. The 5'-end of the cluster consists of the same genes as O:1b for synthesis of Parf and a related gene for its transfer to the repeating unit backbone.
Resumo:
Lipooligosaccharide (LOS) is a complex surface structure that is linked to many pathogenic properties of Acinetobacter baumannii. In A. baumannii, the genes responsible for the synthesis of the outer core (OC) component of the LOS are located between ilvE and aspS. The content of the OC locus is usually variable within a species, and examination of 6 complete and 227 draft A. baumannii genome sequences available in GenBank non-redundant and Whole Genome Shotgun databases revealed nine distinct new types, OCL4-OCL12, in addition to the three known ones. The twelve gene clusters fell into two distinct groups, designated Group A and Group B, based on similarities in the genes present. OCL6 (Group B) was unique in that it included genes for the synthesis of L-Rhamnosep. Genetic exchange of the different configurations between strains has occurred as some OC forms were found in several different sequence types (STs). OCL1 (Group A) was the most widely distributed being present in 18 STs, and OCL6 was found in 16 STs. Variation within clones was also observed, with more than one OC locus type found in the two globally disseminated clones, GC1 and GC2, that include the majority of multiply antibiotic resistant isolates. OCL1 was the most abundant gene cluster in both GC1 and GC2 genomes but GC1 isolates also carried OCL2, OCL3 or OCL5, and OCL3 was also present in GC2. As replacement of the OC locus in the major global clones indicates the presence of sub-lineages, a PCR typing scheme was developed to rapidly distinguish Group A and Group B types, and to distinguish the specific forms found in GC1 and GC2 isolates.
Resumo:
During Pavlovian auditory fear conditioning a previously neutral auditory stimulus (CS) gains emotional significance through pairing with a noxious unconditioned stimulus (US). These associations are believed to be formed by way of plasticity at auditory input synapses on principal neurons of the lateral nucleus of the amygdala (LA). While the LA has been implicated as a key brain structure for fear learning, how its network of cellular components performs these operations is not yet known...
Resumo:
A series of rubber composites were prepared by blending styrene-butadiene rubber (SBR) latex and the different particle sized kaolinites. The thermal stabilities of the rubber composites were characterized using thermogravimetry, digital photography, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. Kaolinite SBR composites showed much greater thermal stability when compared with that of the pure SBR. With the increase of kaolinite particle size, the pyrolysis products became much looser; the char layer and crystalline carbon content gradually decreased in the pyrolysis residues. The pyrolysis residues of the SBR composites filled with the different particle sized kaolinites showed some remarkable changes in structural characteristics. The increase of kaolinite particle size was not beneficial to form the compact and stable crystalline carbon in the pyrolysis process, and resulted in a negative influence in improving the thermal stability of kaolinite/SBR composites.
Resumo:
The structural characteristics of raw coal and hydrogen peroxide (H2O2)-oxidized coals were investigated using scanning electron microscopy, X-ray diffraction (XRD), Raman spectra, and Fourier transform infrared (FT-IR) spectroscopy. The results indicate that the derivative coals oxidized by H2O2 are improved noticeably in aromaticity and show an increase first and then a decrease up to the highest aromaticity at 24 h. The stacking layer number of crystalline carbon decreases and the aspect ratio (width versus stacking height) increases with an increase in oxidation time. The content of crystalline carbon shows the same change tendency as the aromaticity measured by XRD. The hydroxyl bands of oxidized coals become much stronger due to an increase in soluble fatty acids and alcohols as a result of the oxidation of the aromatic and aliphatic C‐H bonds. In addition, the derivative coals display a decrease first and then an increase in the intensity of aliphatic C‐H bond and present a diametrically opposite tendency in the aromatic C‐H bonds with an increase in oxidation time. There is good agreement with the changes of aromaticity and crystalline carbon content as measured by XRD and Raman spectra. The particle size of oxidized coals (<200 nm in width) shows a significant decrease compared with that of raw coal (1 μm). This study reveals that the optimal oxidation time is ∼24 h for improving the aromaticity and crystalline carbon content of H2O2-oxidized coals. This process can help us obtain superfine crystalline carbon materials similar to graphite in structure.
Resumo:
Context Older oncology patients have unique needs associated with the many physical, psychological,and social changes associated with the aging process. The mechanisms underpinning and the impact of these changes are not well understood. Identification of clusters of symptoms is one approach that has been used to elicit hypotheses about the biological and/or psychological basis for variations in symptom experiences. Objectives The purposes of this study were to identify and compare symptom clusters in younger (<60 years) and older ($60 years) patients undergoing cancer treatment. Methods. Symptom data from one Australian study and two U.S. studies were combined to conduct this analysis. A total of 593 patients receiving active treatment were dichotomized into younger (<60 years) and older ($60 years) groups. Separate exploratory factor analyses (EFAs) were undertaken within each group to identify symptom clusters from occurrence ratings of the 32 symptoms assessed by the Memorial Symptom Assessment Scale. Results In both groups, a seven-factor solution was selected. Four partially concordant symptom clusters emerged in both groups (i.e., mood/cognitive, malaise, body image, and genitourinary). In the older patients, the three unique clusters reflected physiological changes associated with aging, whereas in the younger group the three unique clusters reflected treatment-related effects. Conclusion The symptom clusters identified in older patients typically included a larger and more diverse range of physical and psychological symptoms. Differences also may be reflective of variations in treatment approaches between age groups. Findings highlight the need for better understanding of variation in treatment and symptom burden between younger and older adults with cancer.
Resumo:
In the structural health monitoring (SHM) field, long-term continuous vibration-based monitoring is becoming increasingly popular as this could keep track of the health status of structures during their service lives. However, implementing such a system is not always feasible due to on-going conflicts between budget constraints and the need of sophisticated systems to monitor real-world structures under their demanding in-service conditions. To address this problem, this paper presents a comprehensive development of a cost-effective and flexible vibration DAQ system for long-term continuous SHM of a newly constructed institutional complex with a special focus on the main building. First, selections of sensor type and sensor positions are scrutinized to overcome adversities such as low-frequency and low-level vibration measurements. In order to economically tackle the sparse measurement problem, a cost-optimized Ethernet-based peripheral DAQ model is first adopted to form the system skeleton. A combination of a high-resolution timing coordination method based on the TCP/IP command communication medium and a periodic system resynchronization strategy is then proposed to synchronize data from multiple distributed DAQ units. The results of both experimental evaluations and experimental–numerical verifications show that the proposed DAQ system in general and the data synchronization solution in particular work well and they can provide a promising cost-effective and flexible alternative for use in real-world SHM projects. Finally, the paper demonstrates simple but effective ways to make use of the developed monitoring system for long-term continuous structural health evaluation as well as to use the instrumented building herein as a multi-purpose benchmark structure for studying not only practical SHM problems but also synchronization related issues.
Resumo:
We have studied the mineral Ca(H4B3O7)(OH)⋅4(H2O) or CaB3O3(OH)5⋅4(H2O) using electron microscopy and vibrational spectroscopy. The mineral has been characterized by a range of techniques including X-ray diffraction, thermal analysis, electron microscopy with EDX and vibrational spectroscopy. Electron microscopy shows a pure phase and the chemical analysis shows the presence of calcium only. The nominal resolution of the Raman spectrometer is of the order of 2 cm−1 and as such is sufficient enough to identify separate bands for the stretching bands of the two boron isotopes. Raman and infrared bands are assigned to the stretching and bending modes of trigonal and tetrahedral boron and the stretching modes of the hydroxyl and water units. By using a combination of techniques we have characterized the borate mineral inyoite.
Resumo:
Many researchers in the field of civil structural health monitoring (SHM) have developed and tested their methods on simple to moderately complex laboratory structures such as beams, plates, frames, and trusses. Fieldwork has also been conducted by many researchers and practitioners on more complex operating bridges. Most laboratory structures do not adequately replicate the complexity of truss bridges. Informed by a brief review of the literature, this paper documents the design and proposed test plan of a structurally complex laboratory bridge model that has been specifically designed for the purpose of SHM research. Preliminary results have been presented in the companion paper.
Resumo:
Changes in the thickness of the invivo peripapillary choroid have been documented in a range of ocular conditions in adults; however, choroidal thickness in the peripapillary region of children has not been examined in detail. This study therefore aimed to investigate the thickness of the peripapillary choroid and the overlying retinal nerve fibre layer (RNFL) in a population of normal children with a range of refractive errors. Ninety-three children (37 myopes and 56 non-myopes) aged between 11 and 16 years, had measurements of peripapillary choroidal and RNFL thickness derived from enhanced depth imaging optical coherence tomography images (EDI-OCT, Heidelberg Spectralis). The average thickness was determined in a series of five 0.25 mm width concentric annuli (each divided into 8 equal sized 45° sectors) centred on the optic nerve head boundary, accounting for individual ocular magnification factors and the disc-fovea angle. Significant variations in peripapillary choroidal thickness were found to occur with both annulus location (p<0.001) and sector position (p<0.001) in this population of children. The innermost annulus (closest to the edge of the optic disc) exhibited the thinnest choroid (mean 77 ± 16 μm) and the outermost annulus, the thickest choroid (191 ± 52 μm). The choroid was thinnest inferior to the optic nerve head (139 ± 38 μm) and was thickest in the superior temporal sector (157 ± 40 μm). Significant differences in the distribution of choroidal thickness were also associated with myopia, with myopic children having significantly thinner choroids in the inner and outer annuli of the nasal and temporal sectors respectively (p<0.001). RNFL thickness also varied significantly with annulus location and sector (p<0.001), and showed differences in thickness distribution associated with refractive error. This study establishes the normal variations in the thickness of the peripapillary choroid with radial distance and azimuthal angle from the optic nerve head boundary. A significant thinning of the peripapillary choroid associated with myopia in childhood was also observed in both nasal and temporal regions. The changes in peripapillary RNFL and choroidal thickness associated with refractive error are consistent with a redistribution of these tissues occurring with myopic axial elongation in childhood.
Resumo:
- Objective To investigate if parental disapproval of alcohol use accounts for differences in adolescent alcohol use across regional and urban communities. - Design Secondary data analysis of grade-level stratified data from a random sample of schools. - Setting High schools in Victoria, Australia. - Participants A random sample of 10273 adolescents from Grade 7 (mean age=12.51 years), 9 (14.46 years) and 11 (16.42 years). - Main outcome measures The key independent variables were parental disapproval of adolescent alcohol use and regionality (regional/ urban), and the dependent variable was past 30 days alcohol use. - Results After adjusting for potential confounders, adolescents in regional areas were more likely to use alcohol in the past 30 days (OR=1.83, 1.44 and 1.37 for Grades 7, 9 and 11, respectively, P<0.05), and their parents have a lower level of disapproval of their alcohol use (b=-0.12, -0.15 and -0.19 for Grades 7, 9 and 11, respectively, P<0.001). Bootstrapping analyses suggested that 8.37%, 23.30% and 39.22% of the effect of regionality on adolescent alcohol use was mediated by parental disapproval of alcohol use for Grades 7, 9 and 11 participants respectively (P<0.05). - Conclusions Adolescents in urban areas had a lower risk of alcohol use compared with their regional counterparts, and differences in parental disapproval of alcohol use contributed to this difference.
Resumo:
Many researchers in the field of civil structural health monitoring have developed and tested their methods on simple to moderately complex laboratory structures such as beams, plates, frames, and trusses. Field work has also been conducted by many researchers and practitioners on more complex operating bridges. Most laboratory structures do not adequately replicate the complexity of truss bridges. This paper presents some preliminary results of experimental modal testing and analysis of the bridge model presented in the companion paper, using the peak picking method, and compares these results with those of a simple numerical model of the structure. Three dominant modes of vibration were experimentally identified under 15 Hz. The mode shapes and order of the modes matched those of the numerical model; however, the frequencies did not match.
Resumo:
This paper presents a multi-criteria based approach for nondestructive diagnostic structural integrity assessment of a decommissioned flatbed rail wagon (FBRW) used for road bridge superstructure rehabilitation and replacement applications. First, full-scale vibration and static test data sets are employed in a FE model of the FBRW to obtain the best ‘initial’ estimate of the model parameters. Second, the ‘final’ model parameters are predicted using sensitivity-based perturbation analysis without significant difficulties encountered. Consequently, the updated FBRW model is validated using the independent sets of full-scale laboratory static test data. Finally, the updated and validated FE model of the FBRW is used for structural integrity assessment of a single lane FBRW bridge subjected to the Australian bridge design traffic load.
Resumo:
Objectives The purpose of this study was to identify the structural quality of care domains and to establish a set of structural quality indicators (SQIs) for the assessment of care of older people with cognitive impairment in emergency departments (EDs). Methods A structured approach to SQI development was undertaken including: 1) a comprehensive search of peer-reviewed and gray literature focusing on identification of evidence-based interventions targeting structure of care of older patients with cognitive impairment and existing SQIs; 2) a consultative process engaging experts in the care of older people and epidemiologic methods (i.e., advisory panel) leading to development of a draft set of SQIs; 3) field testing of drafted SQIs in eight EDs, leading to refinement of the SQI set, and; 4) an independent voting process among the panelists for SQI inclusion in a final set, using preestablished inclusion and exclusion criteria. Results At the conclusion of the process, five SQIs targeting the management of older ED patients with cognitive impairment were developed: 1) the ED has a policy outlining the management of older people with cognitive impairment during the ED episode of care; 2) the ED has a policy outlining issues relevant to carers of older people with cognitive impairment, encompassing the need to include the (family) carer in the ED episode of care; 3) the ED has a policy outlining the assessment and management of behavioral symptoms, with specific reference to older people with cognitive impairment; 4) the ED has a policy outlining delirium prevention strategies, including the assessment of patients' delirium risk factors, and; 5) the ED has a policy outlining pain assessment and management for older people with cognitive impairment. Conclusions This article presents a set of SQIs for the evaluation of performance in caring for older people with cognitive impairment in EDs.