569 resultados para Multi-robot cooperation
Resumo:
We describe a novel approach to treatment planning for focal brachytherapy utilizing a biologically based inverse optimization algorithm and biological imaging to target an ablative dose at known regions of significant tumour burden and a lower, therapeutic dose to low risk regions.
Resumo:
One underappreciated consequence of the aging population phenomenon is that we are now experiencing what is arguably the most age-diverse workforce in modern history (Hanks & Icenogle, 2001; Newton, 2006; Toossi, 2004). As our workforce continues to age, shifts in the age demographic composition (i.e., the age diversity) of organizations and their subunits will become more apparent (Roth, Wegge, & Schmidt, 2007). Several factors have influenced and will continue to drive this trend. For example, in Western countries, younger people entering the workforce are more educated than ever before (Hussar & Bailey, 2013; Ryan & Siebens, 2012; Stoops, 2003) and could feasibly rise to positions of power in organizations more quickly than others have in the past (e.g., promotion rates vary as a function of age) (Rosenbaum, 1979; see also Clemens, 2012 conceptualization of the "fast track effect"). Furthermore, older workers are increasingly delaying retirement beyond the normative retirement age (Baltes & Rudolph, 2012; Burtless, 2012; Flynn, 2010), and already retired individuals are seeking re-employment in bridge employment roles in higher numbers than before (e.g., Adams & Rau, 2004; Kim & Feldman, 2000; Weckerle & Shultz, 1999).
Resumo:
Ecosystem based management requires the integration of various types of assessment indicators. Understanding stakeholders' information preferences is important, in selecting those indicators that best support management and policy. Both the preferences of decision-makers and the general public may matter, in democratic participatory management institutions. This paper presents a multi-criteria analysis aimed at quantifying the relative importance to these groups of economic, ecological and socio-economic indicators usually considered when managing ecosystem services in a coastal development context. The Analytic Hierarchy Process (AHP) is applied within two nationwide surveys in Australia, and preferences of both the general public and decision-makers for these indicators are elicited and compared. Results show that, on average across both groups, the priority in assessing a generic coastal development project is for the ecological assessment of its impacts on marine biodiversity. Ecological assessment indicators are globally preferred to both economic and socio-economic indicators regardless of the nature of the impacts studied. These results are observed for a significantly larger proportion of decision-maker than general public respondents, questioning the extent to which the general public's preferences are well reflected in decision-making processes.
Resumo:
The benefits of physical activity are established and numerous, including improved musculoskeletal health and reduced risk of cardiovascular disease, diabetes, some cancers, and a range of other chronic conditions. While sedentary lifestyles are becoming increasingly prevalent among populations internationally, people with musculoskeletal disorders may face additional challenges to undertaking exercise and physically activities. Unfortunately, interventions in ambulatory hospital clinics for people with musculoskeletal disorders primarily focus on their presenting musculoskeletal complaint with cursory attention given to lifestyle risk factors; including physical inactivity.
Resumo:
Major infrastructure and construction (MIC) projects are those with significant traffic or environmental impact, of strategic and regional significance and high sensitivity. The decision making process of schemes of this type is becoming ever more complicated, especially with the increasing number of stakeholders involved and their growing tendency to defend their own varied interests. Failing to address and meet the concerns and expectations of stakeholders may result in project failures. To avoid this necessitates a systematic participatory approach to facilitate decision-making. Though numerous decision models have been established in previous studies (e.g. ELECTRE methods, the analytic hierarchy process and analytic network process) their applicability in the decision process during stakeholder participation in contemporary MIC projects is still uncertain. To resolve this, the decision rule approach is employed for modeling multi-stakeholder multi-objective project decisions. Through this, the result is obtained naturally according to the “rules” accepted by any stakeholder involved. In this sense, consensus is more likely to be achieved since the process is more convincing and the result is easier to be accepted by all concerned. Appropriate “rules”, comprehensive enough to address multiple objectives while straightforward enough to be understood by multiple stakeholders, are set for resolving conflict and facilitating consensus during the project decision process. The West Kowloon Cultural District (WKCD) project is used as a demonstration case and a focus group meeting is conducted in order to confirm the validity of the model established. The results indicate that the model is objective, reliable and practical enough to cope with real world problems. Finally, a suggested future research agenda is provided.
Resumo:
Background Malnutrition and unintentional weight loss are major clinical issues in people with dementia living in residential aged care facilities (RACFs) and are associated with serious adverse outcomes. However, evidence regarding effective interventions is limited and strategies to improve the nutritional status of this population are required. This presentation describes the implementation and results of a pilot randomised controlled trial of a multi-component intervention for improving the nutritional status of RACF residents with dementia. Method Fifteen residents with moderate-severe dementia living in a secure long-term RACF participated in a five week pilot study. Participants were randomly allocated to either an Intervention (n=8) or Control group (n=7). The intervention comprised four elements delivered in a separate dining room at lunch and dinner: the systematic reinforcement of residents’ eating behaviors using a specific communication protocol; family-style dining; high ambiance table presentation; and routine Dietary-Nutrition Champion supervision. Control group participants ate their meals according to the facility’s standard practice. Baseline and follow-up assessments of nutritional status, food consumption, and body mass index were obtained by qualified nutritionists. Additional assessments included measures of cognitive functioning, mealtime agitation, depression, wandering status and multiple measures of intervention fidelity. Results No participant was malnourished at study commencement and participants in both groups gained weight from follow-up to baseline which was not significantly different between groups (t=0.43; p=0.67). A high degree of treatment fidelity was evident throughout the intervention. Qualitative data from staff indicate the intervention was perceived to be beneficial for residents. Conclusions This multi-component nutritional intervention was well received and was feasible in the RACF setting. Participants’ sound nutritional status at baseline likely accounts for the lack of an intervention effect. Further research using this protocol in malnourished residents is recommended. For success, a collaborative approach between researchers and facility staff, particularly dietary staff, is essential.
Resumo:
The sugarcane transport system plays a critical role in the overall performance of Australia’s sugarcane industry. An inefficient sugarcane transport system interrupts the raw sugarcane harvesting process, delays the delivery of sugarcane to the mill, deteriorates the sugar quality, increases the usage of empty bins, and leads to the additional sugarcane production costs. Due to these negative effects, there is an urgent need for an efficient sugarcane transport schedule that should be developed by the rail schedulers. In this study, a multi-objective model using mixed integer programming (MIP) is developed to produce an industry-oriented scheduling optimiser for sugarcane rail transport system. The exact MIP solver (IBM ILOG-CPLEX) is applied to minimise the makespan and the total operating time as multi-objective functions. Moreover, the so-called Siding neighbourhood search (SNS) algorithm is developed and integrated with Sidings Satisfaction Priorities (SSP) and Rail Conflict Elimination (RCE) algorithms to solve the problem in a more efficient way. In implementation, the sugarcane transport system of Kalamia Sugar Mill that is a coastal locality about 1050 km northwest of Brisbane city is investigated as a real case study. Computational experiments indicate that high-quality solutions are obtainable in industry-scale applications.
Resumo:
This paper proposes a new multi-stage mine production timetabling (MMPT) model to optimise open-pit mine production operations including drilling, blasting and excavating under real-time mining constraints. The MMPT problem is formulated as a mixed integer programming model and can be optimally solved for small-size MMPT instances by IBM ILOG-CPLEX. Due to NP-hardness, an improved shifting-bottleneck-procedure algorithm based on the extended disjunctive graph is developed to solve large-size MMPT instances in an effective and efficient way. Extensive computational experiments are presented to validate the proposed algorithm that is able to efficiently obtain the near-optimal operational timetable of mining equipment units. The advantages are indicated by sensitivity analysis under various real-life scenarios. The proposed MMPT methodology is promising to be implemented as a tool for mining industry because it is straightforwardly modelled as a standard scheduling model, efficiently solved by the heuristic algorithm, and flexibly expanded by adopting additional industrial constraints.
Resumo:
This paper reviews the recent research progress on multi-layer composite structures composed of variety of materials. The utilization of multi-layer composite system is found to be common in metal structures and pavement systems. The layer of composite structure designed to encounter heavy dynamic energy should have sufficient ductility to counteract the intensity of energy. Therefore, the selection of materials and enhancement of interface bonding become crucial and both are discussed in this paper. The failure modes have also been explored in conjunction with stresses at failures and inferred solutions are also revealed. The paper attempts to reveal all technical facts on multi-layer composite structure in a broad field.
Resumo:
Taking a more integrated approach to planning our neighbourhoods for the continuum of inhabitants’ ages and abilities makes sense given our current and future population composition. Seldom are the built environment requirements of diverse groups (e.g. children, seniors, and people with disability) synthesised, resulting in often unfriendly and exclusionary neighbourhoods. This often means people experience barriers or restriction on their freedom to move about and interact within their neighbourhood. Applying universal design to neighbourhoods may provide a bridging link. By presenting two cases from South-East Queensland (SEQ), Australia, through the lenses of different ages and abilities - older children with physical disabilities and their families (Stafford 2013, 2014) and seniors (Baldwin et al. 2012), we intend to increase recognition of users' needs and stimulate the translation of knowledge to the practice of planning inclusive neighbourhoods.
Resumo:
Insulin receptor (IR) signaling is critical to controlling nutrient uptake and metabolism. However, only a low-resolution (3.8 Å) structure currently exists for the IR ectodomain, with some segments ill-defined or unmodeled due to disorder. Here, we revise this structure using new diffraction data to 3.3 Å resolution that allow improved modeling of the N-linked glycans, the first and third fibronectin type III domains, and the insert domain. A novel haptic interactive molecular dynamics strategy was used to aid fitting to low-resolution electron density maps. The resulting model provides a foundation for investigation of structural transitions in IR upon ligand binding.
Resumo:
There are some scenarios in which Unmmaned Aerial Vehicle (UAV) navigation becomes a challenge due to the occlusion of GPS systems signal, the presence of obstacles and constraints in the space in which a UAV operates. An additional challenge is presented when a target whose location is unknown must be found within a confined space. In this paper we present a UAV navigation and target finding mission, modelled as a Partially Observable Markov Decision Process (POMDP) using a state-of-the-art online solver in a real scenario using a low cost commercial multi rotor UAV and a modular system architecture running under the Robotic Operative System (ROS). Using POMDP has several advantages to conventional approaches as they take into account uncertainties in sensor information. We present a framework for testing the mission with simulation tests and real flight tests in which we model the system dynamics and motion and perception uncertainties. The system uses a quad-copter aircraft with an board downwards looking camera without the need of GPS systems while avoiding obstacles within a confined area. Results indicate that the system has 100% success rate in simulation and 80% rate during flight test for finding targets located at different locations.
Resumo:
Hydraulic instabilities represent a critical problem for Francis and Kaplan turbines, reducing their useful life due to increase of fatigue on the components and cavitation phenomena. Whereas an exhaustive list of publications on computational fluid-dynamic models of hydraulic instability is available, the possibility of applying diagnostic techniques based on vibration measurements has not been investigated sufficiently, also because the appropriate sensors seldom equip hydro turbine units. The aim of this study is to fill this knowledge gap and to exploit fully, for this purpose, the potentiality of combining cyclostationary analysis tools, able to describe complex dynamics such as those of fluid-structure interactions, with order tracking procedures, allowing domain transformations and consequently the separation of synchronous and non-synchronous components. This paper will focus on experimental data obtained on a full-scale Kaplan turbine unit, operating in a real power plant, tackling the issues of adapting such diagnostic tools for the analysis of hydraulic instabilities and proposing techniques and methodologies for a highly automated condition monitoring system. © 2015 Elsevier Ltd.
Resumo:
Hospitals are critical elements of health care systems and analysing their capacity to do work is a very important topic. To perform a system wide analysis of public hospital resources and capacity, a multi-objective optimization (MOO) approach has been proposed. This approach identifies the theoretical capacity of the entire hospital and facilitates a sensitivity analysis, for example of the patient case mix. It is necessary because the competition for hospital resources, for example between different entities, is highly influential on what work can be done. The MOO approach has been extensively tested on a real life case study and significant worth is shown. In this MOO approach, the epsilon constraint method has been utilized. However, for solving real life applications, with a large number of competing objectives, it was necessary to devise new and improved algorithms. In addition, to identify the best solution, a separable programming approach was developed. Multiple optimal solutions are also obtained via the iterative refinement and re-solution of the model.
Resumo:
Multi-agent systems implicate a high degree of concurrency at both the Inter- and Intra-Agent levels. Scalable, fault tolerant, Agent Grooming Environment (SAGE), the second generation, FIPA compliant MAS requires a built in mechanism to achieve both the Inter- and Intra-Agent concurrency. This paper dilates upon an attempt to provide a reliable, efficient and light-weight solution to provide intra-agent concurrency with-in the internal agent architecture of SAGE. It addresses the issues related to using the JAVA threading model to provide this level of concurrency to the agent and provides an alternative approach that is based on an eventdriven, concurrent and user-scalable multi-tasking model for the agent's internal model. The findings of this paper show that our proposed approach is suitable for providing an efficient and lightweight concurrent task model for SA GE and considerably outweighs the performance of multithreaded tasking model based on JAVA in terms of throughput and efficiency. This has been illustrated using the practical implementation and evaluation of both models. © 2004 IEEE.