546 resultados para CELL SIGNALLING
Resumo:
Multidrug resistance (MDR) occurs in prostate cancer, and this happens when the cancer cells resist chemotherapeutic drugs by pumping them out of the cells. MDR inhibitors such as cyclosporin A (CsA) can stop the pumping and enhance the drugs accumulated in the cells. The cellular drug accumulation is monitored using a microfluidic chip mounted on a single cell bioanalyzer. This equipment has been developed to measure accumulation of drugs such as doxorubicin (DOX) and fluorescently labeled paclitaxel (PTX) in single prostate cancer cells. The inhibition of drug efflux on the same prostate cell was examined in drug-sensitive and drug-resistant cells. Accumulation of these drug molecules was not found in the MDR cells, PC-3 RX-DT2R cells. Enhanced drug accumulation was observed only after treating the MDR cell in the presence of 5 μM of CsA as the MDR inhibitor. We envision this monitoring of the accumulation of fluorescent molecules (drug or fluorescent molecules), if conducted on single patient cancer cells, can provide information for clinical monitoring of patients undergoing chemotherapy in the future.
Numerical investigation of motion and deformation of a single red blood cell in a stenosed capillary
Resumo:
It is generally assumed that influence of the red blood cells (RBCs) is predominant in blood rheology. The healthy RBCs are highly deformable and can thus easily squeeze through the smallest capillaries having internal diameter less than their characteristic size. On the other hand, RBCs infected by malaria or other diseases are stiffer and so less deformable. Thus it is harder for them to flow through the smallest capillaries. Therefore, it is very important to critically and realistically investigate the mechanical behavior of both healthy and infected RBCs which is a current gap in knowledge. The motion and the steady state deformed shape of the RBCs depend on many factors, such as the geometrical parameters of the capillary through which blood flows, the membrane bending stiffness and the mean velocity of the blood flow. In this study, motion and deformation of a single two-dimensional RBC in a stenosed capillary is explored by using smoothed particle hydrodynamics (SPH) method. An elastic spring network is used to model the RBC membrane, while the RBC's inside fluid and outside fluid are treated as SPH particles. The effect of RBC's membrane stiffness (kb), inlet pressure (P) and geometrical parameters of the capillary on the motion and deformation of the RBC is studied. The deformation index, RBC's mean velocity and the cell membrane energy are analyzed when the cell passes through the stenosed capillary. The simulation results demonstrate that the kb, P and the geometrical parameters of the capillary have a significant impact on the RBCs' motion and deformation in the stenosed section.
Resumo:
In vitro studies and mathematical models are now being widely used to study the underlying mechanisms driving the expansion of cell colonies. This can improve our understanding of cancer formation and progression. Although much progress has been made in terms of developing and analysing mathematical models, far less progress has been made in terms of understanding how to estimate model parameters using experimental in vitro image-based data. To address this issue, a new approximate Bayesian computation (ABC) algorithm is proposed to estimate key parameters governing the expansion of melanoma cell (MM127) colonies, including cell diffusivity, D, cell proliferation rate, λ, and cell-to-cell adhesion, q, in two experimental scenarios, namely with and without a chemical treatment to suppress cell proliferation. Even when little prior biological knowledge about the parameters is assumed, all parameters are precisely inferred with a small posterior coefficient of variation, approximately 2–12%. The ABC analyses reveal that the posterior distributions of D and q depend on the experimental elapsed time, whereas the posterior distribution of λ does not. The posterior mean values of D and q are in the ranges 226–268 µm2h−1, 311–351 µm2h−1 and 0.23–0.39, 0.32–0.61 for the experimental periods of 0–24 h and 24–48 h, respectively. Furthermore, we found that the posterior distribution of q also depends on the initial cell density, whereas the posterior distributions of D and λ do not. The ABC approach also enables information from the two experiments to be combined, resulting in greater precision for all estimates of D and λ.
Resumo:
We develop a hybrid cellular automata model to describe the effect of the immune system and chemokines on a growing tumor. The hybrid cellular automata model consists of partial differential equations to model chemokine concentrations, and discrete cellular automata to model cell–cell interactions and changes. The computational implementation overlays these two components on the same spatial region. We present representative simulations of the model and show that increasing the number of immature dendritic cells (DCs) in the domain causes a decrease in the number of tumor cells. This result strongly supports the hypothesis that DCs can be used as a cancer treatment. Furthermore, we also use the hybrid cellular automata model to investigate the growth of a tumor in a number of computational “cancer patients.” Using these virtual patients, the model can explain that increasing the number of DCs in the domain causes longer “survival.” Not surprisingly, the model also reflects the fact that the parameter related to tumor division rate plays an important role in tumor metastasis.
Resumo:
This work addresses fundamental issues in the mathematical modelling of the diffusive motion of particles in biological and physiological settings. New mathematical results are proved and implemented in computer models for the colonisation of the embryonic gut by neural cells and the propagation of electrical waves in the heart, offering new insights into the relationships between structure and function. In particular, the thesis focuses on the use of non-local differential operators of non-integer order to capture the main features of diffusion processes occurring in complex spatial structures characterised by high levels of heterogeneity.