647 resultados para stress-energy tensor
Resumo:
This thesis examines the existing frameworks for energy management in the brewing industry and details the design, development and implementation of a new framework at a modern brewery. The aim of the research was to develop an energy management framework to identify opportunities in a systematic manner using Systems Engineering concepts and principles. This work led to a Sustainable Energy Management Framework, SEMF. Using the SEMF approach, one of Australia's largest breweries has achieved number 1 ranking in the world for water use for the production of beer and has also improved KPI's and sustained the energy management improvements that have been implemented during the past 15 years. The framework can be adapted to other manufacturing industries in the Australian context and is considered to be a new concept and a potentially important tool for energy management.
Resumo:
Strain-based failure criteria have several advantages over stress-based failure criteria: they can account for elastic and inelastic strains, they utilise direct, observables effects instead of inferred effects (strain gauges vs. stress estimates), and model complete stress-strain curves including pre-peak, non-linear elasticity and post-peak strain weakening. In this study, a strain-based failure criterion derived from thermodynamic first principles utilising the concepts of continuum damage mechanics is presented. Furthermore, implementation of this failure criterion into a finite-element simulation is demonstrated and applied to the stability of underground mining coal pillars. In numerical studies, pillar strength is usually expressed in terms of critical stresses or stress-based failure criteria where scaling with pillar width and height is common. Previous publications have employed the finite-element method for pillar stability analysis using stress-based failure criterion such as Mohr-Coulomb and Hoek-Brown or stress-based scalar damage models. A novel constitutive material model, which takes into consideration anisotropy as well as elastic strain and damage as state variables has been developed and is presented in this paper. The damage threshold and its evolution are strain-controlled, and coupling of the state variables is achieved through the damage-induced degradation of the elasticity tensor. This material model is implemented into the finite-element software ABAQUS and can be applied to 3D problems. Initial results show that this new material model is capable of describing the non-linear behaviour of geomaterials commonly observed before peak strength is reached as well as post-peak strain softening. Furthermore, it is demonstrated that the model can account for directional dependency of failure behaviour (i.e. anisotropy) and has the potential to be expanded to environmental controls like temperature or moisture.
Resumo:
Society is increasingly calling for professionals across government, industry, business and civil society to be able to problem-solve issues related to climate change and sustainable development as part of their work. In particular there is an emerging realisation of the fundamental need to swiftly reduce the growing demand for energy across society, and to then meet the demand with low emissions options. A key ingredient to addressing such issues is equipping professionals with emerging knowledge and skills to address energy challenges in all aspects of their work. The Council of Australian Governments has recognised this need, signing the National Partnership Agreement on Energy Efficiency in July 2009, which included a commitment to assist business and industry obtain the knowledge, skills and capacity to pursue cost-effective energy efficiency opportunities.2 Engineering will play a critical part among the professions, with Engineers Australia acknowledging that, ‘The need to make changes in the way energy is used and supplied throughout the world represents the greatest challenge to engineers in moving toward sustainability.’
Resumo:
This report presents the findings of an investigation of energy efficiency resources for undergraduate engineering education, undertaken by web-based research, conversations with educators, and a university survey. The investigation draws on the results of a number of previous investigations undertaken by the research team for NFEE related to energy efficiency education and presents the following findings and recommendations, as explained in greater detail in the body of the report. The findings suggest that even though certain EE concepts and principles have been identified by lecturers as being important there is little to no coverage of a number of these concepts in some programs/courses. Similarly, many topics relating to the most important EE workforce skills and significant shortages as identified in industry research, do not rate highly in terms of both perceived importance by lecturers, or coverage within existing courses. Overall, these findings suggest that despite growing awareness of the importance of EE in both industry and academia, the current depth and breadth of EE content in courses does not reflect this. It confirms that efforts in these areas can be better supported.
Resumo:
The Energy Efficiency (EE) Graduate Attributes Project focuses on engineering as a priority profession that has a significant role to play in addressing energy demand and supply issues in Australia. Specifically, this project aims to support embedding EE knowledge and skills throughout the engineering undergraduate curriculum, to help build capacity within the Australian workforce across major sectors of the economy, from mining, manufacturing and industrial applications to design, construction, maintenance and retrofitting built environments. The resultant report is intended to assist in future consultation with key groups such as Engineers Australia (EA), the Australian Council of Engineering Deans (ACED) and the eight EA colleges, to support systemic curriculum renewal and promote the design and development of high quality EE engineering education resources. The project is based on a whole-of-program outcomes-based approach to curriculum renewal, creating a transparent framework for integrating EE. This comprises collaborative consideration by academics and professional engineers who have experience in teaching and practising EE, to identify what students should learn to be equipped with relevant competencies by the time they graduate.
Resumo:
As the key neuron-to-neuron interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. However, the signal transduction mechanisms by which stress mediates its lasting effects on synapse transmission and on memory are not fully understood. A key component of the stress response is the increased secretion of adrenal steroids. Adrenal steroids (e.g., cortisol) bind to genomic mineralocorticoid and glucocorticoid receptors (gMRs and gGRs) in the cytosol. In addition, they may act through membrane receptors (mMRs and mGRs), and signal transduction through these receptors may allow for rapid modulation of synaptic transmission as well as modulation of membrane ion currents. mMRs increase synaptic and neuronal excitability; mechanisms include the facilitation of glutamate release through extracellular signal-regulated kinase signal transduction. In contrast, mGRs decrease synaptic and neuronal excitability by reducing calcium currents through N-methyl-D-aspartate receptors and voltage-gated calcium channels by way of protein kinase A- and G protein-dependent mechanisms. This body of functional data complements anatomical evidence localizing GRs to the postsynaptic membrane. Finally, accumulating data also suggest the possibility that mMRs and mGRs may show an inverted U-shaped dose response, whereby glutamatergic synaptic transmission is increased by low doses of corticosterone acting at mMRs and decreased by higher doses acting at mGRs. Thus, synaptic transmission is regulated by mMRs and mGRs, and part of the stress signaling response is a direct and bidirectional modulation of the synapse itself by adrenal steroids.
Resumo:
In this thesis various schemes using custom power devices for power quality improvement in low voltage distribution network are studied. Customer operated distributed generators makes a typical network non-radial and affect the power quality. A scheme considering different algorithm of DSTATCOM is proposed for power circulation and islanded operation of the system. To compensate reactive power overflow and facilitate unity power factor, a UPQC is introduced. Stochastic analysis is carried out for different scenarios to get a comprehensive idea about a real life distribution network. Combined operation of static compensator and voltage regulator is tested for the optimum quality and stability of the system.
Resumo:
This chapter focuses on the implementation of the TS (Tagaki-Sugino) fuzzy controller for the Doubly Fed Induction Generator (DFIG) based wind generator. The conventional PI control loops for mantaining desired active power and DC capacitor voltage is compared with the TS fuzzy controllers. DFIG system is represented by a third-order model where electromagnetic transients of the stator are neglected. The effectiveness of the TS-fuzzy controller on the rotor speed oscillations and the DC capacitor voltage variations of the DFIG damping controller on converter ratings is also investigated. The results from the time domain simulations are presented to elucidate the effectiveness of the TS-fuzzy controller over the conventional PI controller in the DFIG system. The proposed TS-fuzzy con-troller can improve the fault ride through capability of DFIG compared to the conventional PI controller.
Resumo:
Despite tough economic times, the uptake of photovoltaic (PV) technology has seen tremendous growth over the past decade. More than 21 GW of rooftop PV systems were installed globally in the year 2012 alone. This is fueled by various incentives offered by policy makers around the world with a goal of enhancing renewable energy integration and reducing the dependence on fossil fuels. For instance, the goal of achieving 20% energy consumption from renewable resources by 2020 has been unanimously accepted by numerous countries in Europe, North America, and Australia. Uptake of PVs by residential and small businesses has been augmented by generous rebates offered by government on installations and on the amount of energy injected into the grid. Furthermore, the global market outlook report published by EPIA predicts that the rooftop PV installations will continue to grow for the foreseeable future.
Resumo:
User profiling is the process of constructing user models which represent personal characteristics and preferences of customers. User profiles play a central role in many recommender systems. Recommender systems recommend items to users based on user profiles, in which the items can be any objects which the users are interested in, such as documents, web pages, books, movies, etc. In recent years, multidimensional data are getting more and more attention for creating better recommender systems from both academia and industry. Additional metadata provides algorithms with more details for better understanding the interactions between users and items. However, most of the existing user/item profiling techniques for multidimensional data analyze data through splitting the multidimensional relations, which causes information loss of the multidimensionality. In this paper, we propose a user profiling approach using a tensor reduction algorithm, which we will show is based on a Tucker2 model. The proposed profiling approach incorporates latent interactions between all dimensions into user profiles, which significantly benefits the quality of neighborhood formation. We further propose to integrate the profiling approach into neighborhoodbased collaborative filtering recommender algorithms. Experimental results show significant improvements in terms of recommendation accuracy.