718 resultados para mapping method
Resumo:
BACKGROUND Integrating plant genomics and classical breeding is a challenge for both plant breeders and molecular biologists. Marker-assisted selection (MAS) is a tool that can be used to accelerate the development of novel apple varieties such as cultivars that have fruit with anthocyanin through to the core. In addition, determining the inheritance of novel alleles, such as the one responsible for red flesh, adds to our understanding of allelic variation. Our goal was to map candidate anthocyanin biosynthetic and regulatory genes in a population segregating for the red flesh phenotypes. RESULTS We have identified the Rni locus, a major genetic determinant of the red foliage and red colour in the core of apple fruit. In a population segregating for the red flesh and foliage phenotype we have determined the inheritance of the Rni locus and DNA polymorphisms of candidate anthocyanin biosynthetic and regulatory genes. Simple Sequence Repeats (SSRs) and Single Nucleotide Polymorphisms (SNPs) in the candidate genes were also located on an apple genetic map. We have shown that the MdMYB10 gene co-segregates with the Rni locus and is on Linkage Group (LG) 09 of the apple genome. CONCLUSION We have performed candidate gene mapping in a fruit tree crop and have provided genetic evidence that red colouration in the fruit core as well as red foliage are both controlled by a single locus named Rni. We have shown that the transcription factor MdMYB10 may be the gene underlying Rni as there were no recombinants between the marker for this gene and the red phenotype in a population of 516 individuals. Associating markers derived from candidate genes with a desirable phenotypic trait has demonstrated the application of genomic tools in a breeding programme of a horticultural crop species.
Resumo:
We present a mini-scale method for nuclear run-on transcription assay. In our method, all the centrifuge steps can be carried out by using micro-tubes for short time (5 min each) throughout the process, including isolation of transcriptionally active nuclei and purification of labeled RNA after synthesis of RNA in isolated nuclei. The assay can be performed using a small amount of plant tissue, which enables analysis of developmental changes in transcriptional status of given genes in a single individual plant. Successful results were obtained using the tissues of flower and leaf of petunia and embryo of pea, suggesting that the method is potentially applicable to a variety of plant tissues.
Resumo:
All design classes followed a systematic design approach, that, in an abstract way, can be characterized by figure 1. This approach is based on our design approach [1] that we labeled DUTCH (design for users and tasks, from concepts to handles).Consequently, each course starts with collecting, modeling, and analyzing an existing situation. The next step is the development of a vision on a future domain world where new technology and / or new representations have been implemented. This second step is the first tentative global design that will be represented in scenarios or prototypes and can be assessed. This second design model is based on both the client’s requirements and technological possibilities and challenges. In an iterative way multiple instantiations of detail design may follow, that each can be assessed and evaluated again...
Resumo:
MicroRNAs (miRNAs) are a class of small non-coding RNAs with a critical role in development and environmental responses. Efficient and reliable detection of miRNAs is an essential step towards understanding their roles in specific cells and tissues. However, gel-based assays currently used to detect miRNAs are very limited in terms of throughput, sensitivity and specificity. Here we provide protocols for detection and quantification of miRNAs by RT-PCR. We describe an end-point and real-time looped RT-PCR procedure and demonstrate detection of miRNAs from as little as 20 pg of plant tissue total RNA and from total RNA isolated from as little as 0.1 l of phloem sap. In addition, we have developed an alternative real-time PCR assay that can further improve specificity when detecting low abundant miRNAs. Using this assay, we have demonstrated that miRNAs are differentially expressed in the phloem sap and the surrounding vascular tissue. This method enables fast, sensitive and specific miRNA expression profiling and is suitable for facilitation of high-throughput detection and quantification of miRNA expression.
Resumo:
With the growing size and variety of social media files on the web, it’s becoming critical to efficiently organize them into clusters for further processing. This paper presents a novel scalable constrained document clustering method that harnesses the power of search engines capable of dealing with large text data. Instead of calculating distance between the documents and all of the clusters’ centroids, a neighborhood of best cluster candidates is chosen using a document ranking scheme. To make the method faster and less memory dependable, the in-memory and in-database processing are combined in a semi-incremental manner. This method has been extensively tested in the social event detection application. Empirical analysis shows that the proposed method is efficient both in computation and memory usage while producing notable accuracy.
Resumo:
Recent advances in computer vision and machine learning suggest that a wide range of problems can be addressed more appropriately by considering non-Euclidean geometry. In this paper we explore sparse dictionary learning over the space of linear subspaces, which form Riemannian structures known as Grassmann manifolds. To this end, we propose to embed Grassmann manifolds into the space of symmetric matrices by an isometric mapping, which enables us to devise a closed-form solution for updating a Grassmann dictionary, atom by atom. Furthermore, to handle non-linearity in data, we propose a kernelised version of the dictionary learning algorithm. Experiments on several classification tasks (face recognition, action recognition, dynamic texture classification) show that the proposed approach achieves considerable improvements in discrimination accuracy, in comparison to state-of-the-art methods such as kernelised Affine Hull Method and graph-embedding Grassmann discriminant analysis.
Resumo:
Accurate and detailed measurement of an individual's physical activity is a key requirement for helping researchers understand the relationship between physical activity and health. Accelerometers have become the method of choice for measuring physical activity due to their small size, low cost, convenience and their ability to provide objective information about physical activity. However, interpreting accelerometer data once it has been collected can be challenging. In this work, we applied machine learning algorithms to the task of physical activity recognition from triaxial accelerometer data. We employed a simple but effective approach of dividing the accelerometer data into short non-overlapping windows, converting each window into a feature vector, and treating each feature vector as an i.i.d training instance for a supervised learning algorithm. In addition, we improved on this simple approach with a multi-scale ensemble method that did not need to commit to a single window size and was able to leverage the fact that physical activities produced time series with repetitive patterns and discriminative features for physical activity occurred at different temporal scales.
Resumo:
In this paper, we address the control design problem of positioning of over-actuated underwater vehicles. The proposed design is based on a control architecture with combined position and velocity loops and a control tuning method based on the decoupled models. We derive analytical tuning rules based on requirements of closed-loop stability, positioning performance, and the vehicle velocity dynamic characteristics. The vehicle modelling is considered from force to motion with appropriate simplifications related to low-speed manoeuvring hydrodynamics and vehicle symmetry. The control design is considered together with a control allocation mapping. This approach makes the control tuning independent of the characteristics of the force actuators and provides the basis for control reconfiguration in the presence of actuator failure. We propose an anti-wind-up implementation of the controller, which ensures that the constraints related to actuation capacity are not violated. This approach simplifies the control allocation problem since the actuator constraints are mapped into generalised force constraints.
Resumo:
Assurance of learning (AOL) is a quality enhancement and quality assurance process used in higher education. It involves a process of determining programme learning outcomes and standards, and systematically gathering evidence to measure students' performance on these. The systematic assessment of whole-of-programme outcomes provides a basis for curriculum development and management, continuous improvement, and accreditation. To better understand how AOL processes operate, a national study of university practices across one discipline area, business and management, was undertaken. To solicit data on AOL practice, interviews were undertaken with a sample of business school representatives (n = 25). Two key processes emerged: (1) mapping of graduate attributes and (2) collection of assurance data. External drivers such as professional accreditation and government legislation were the primary reasons for undertaking AOL outcomes but intrinsic motivators in relation to continuous improvement were also evident. The facilitation of academic commitment was achieved through an embedded approach to AOL by the majority of universities in the study. A sustainable and inclusive process of AOL was seen to support wider stakeholder engagement in the development of higher education learning outcomes.
Resumo:
In this paper, the inherent mechanism of social benefits associated with smart grid development is examined based on the pressure state response (PSR) model from resource economics. The emerging types of technology brought up by smart grid development are regarded as pressures. The improvements of the performance and efficiency of power system operation, such as the enhanced capability of accommodating renewable energy generation, are regarded as states. The effects of smart grid development on society are regarded as responses. Then, a novel method for evaluating social benefits from smart grid development is presented. Finally, the social benefits from smart grid development in a province in northwest China are carried out by using the developed evaluation system, and reasonable evaluation results are attained.
Resumo:
Interior permanent-magnet synchronous motors (IPMSMs) become attractive candidates in modern hybrid electric vehicles and industrial applications. Usually, to obtain good control performance, the electric drives of this kind of motor require one position, one dc link, and at least two current sensors. Failure of any of these sensors might lead to degraded system performance or even instability. As such, sensor fault resilient control becomes a very important issue in modern drive systems. This paper proposes a novel sensor fault detection and isolation algorithm based on an extended Kalman filter. It is robust to system random noise and efficient in real-time implementation. Moreover, the proposed algorithm is compact and can detect and isolate all the sensor faults for IPMSM drives. Thorough theoretical analysis is provided, and the effectiveness of the proposed approach is proven by extensive experimental results.
Resumo:
This paper presents a method to enable a mobile robot working in non-stationary environments to plan its path and localize within multiple map hypotheses simultaneously. The maps are generated using a long-term and short-term memory mechanism that ensures only persistent configurations in the environment are selected to create the maps. In order to evaluate the proposed method, experimentation is conducted in an office environment. Compared to navigation systems that use only one map, our system produces superior path planning and navigation in a non-stationary environment where paths can be blocked periodically, a common scenario which poses significant challenges for typical planners.
Resumo:
The main purpose of this article is to gain an insight into the relationships between variables describing the environmental conditions of the Far Northern section of the Great Barrier Reef, Australia. Several of the variables describing these conditions had different measurement levels and often they had non-linear relationships. Using non-linear principal component analysis, it was possible to acquire an insight into these relationships. Furthermore, three geographical areas with unique environmental characteristics could be identified.
Resumo:
This thesis developed a new method for measuring extremely low amounts of organic and biological molecules, using Surface enhanced Raman Spectroscopy. This method has many potential applications, e.g. medical diagnosis, public health, food provenance, antidoping, forensics and homeland security. The method development used caffeine as the small molecule example, and erythropoietin (EPO) as the large molecule. This method is much more sensitive and specific than currently used methods; rapid, simple and cost effective. The method can be used to detect target molecules in beverages and biological fluids without the usual preparation steps.
Resumo:
Fractional differential equations have been increasingly used as a powerful tool to model the non-locality and spatial heterogeneity inherent in many real-world problems. However, a constant challenge faced by researchers in this area is the high computational expense of obtaining numerical solutions of these fractional models, owing to the non-local nature of fractional derivatives. In this paper, we introduce a finite volume scheme with preconditioned Lanczos method as an attractive and high-efficiency approach for solving two-dimensional space-fractional reaction–diffusion equations. The computational heart of this approach is the efficient computation of a matrix-function-vector product f(A)bf(A)b, where A A is the matrix representation of the Laplacian obtained from the finite volume method and is non-symmetric. A key aspect of our proposed approach is that the popular Lanczos method for symmetric matrices is applied to this non-symmetric problem, after a suitable transformation. Furthermore, the convergence of the Lanczos method is greatly improved by incorporating a preconditioner. Our approach is show-cased by solving the fractional Fisher equation including a validation of the solution and an analysis of the behaviour of the model.