727 resultados para ecological engineering
Resumo:
Tissue engineering is a multidisciplinary field with the potential to replace tissues lost as a result of trauma, cancer surgery, or organ dysfunction. The successful production, integration, and maintenance of any tissue-engineered product are a result of numerous molecular interactions inside and outside the cell. We consider the essential elements for successful tissue engineering to be a matrix scaffold, space, cells, and vasculature, each of which has a significant and distinct molecular underpinning (Fig. 1). Our approach capitalizes on these elements. Originally developed in the rat, our chamber model (Fig. 2) involves the placement of an arteriovenous loop (the vascular supply) in a polycarbonate chamber (protected space) with the addition of cells and an extracellular matrix such as Matrigel or endogenous fibrin (34, 153, 246, 247). This model has also been extended to the rabbit and pig (J. Dolderer, M. Findlay, W. Morrison, manuscript in preparation), and has been modified for the mouse to grow adipose tissue and islet cells (33, 114, 122) (Fig. 3)...
Resumo:
Background: An arteriovenous loop (AVL) enclosed in a polycarbonate chamber in vivo, produces a fibrin exudate which acts as a provisional matrix for the development of a tissue engineered microcirculatory network. Objectives: By administering enoxaparin sodium - an inhibitor of fibrin polymerization, the significance of fibrin scaffold formation on AVL construct size (including the AVL, fibrin scaffold, and new tissue growth into the fibrin), growth, and vascularization were assessed and compared to controls. Methods: In Sprague Dawley rats, an AVL was created on femoral vessels and inserted into a polycarbonate chamber in the groin in 3 control groups (Series I) and 3 experimental groups (Series II). Two hours before surgery and 6 hours post-surgery, saline (Series I) or enoxaparin sodium (0.6 mg/kg, Series II) was administered intra-peritoneally. Thereafter, the rats were injected daily with saline (Series I) or enoxaparin sodium (1.5 mg/kg, Series II) until construct retrieval at 3, 10, or 21 days. The retrieved constructs underwent weight and volume measurements, and morphologic/morphometric analysis of new tissue components. Results: Enoxaparin sodium treatment resulted in the development of smaller AVL constructs at 3, 10, and 21 days. Construct weight and volume were significantly reduced at 10 days (control weight 0.337 ± 0.016 g [Mean ± SEM] vs treated 0.228 ± 0.048, [P < .001]: control volume 0.317 ± 0.015 mL vs treated 0.184 ± 0.039 mL [P < .01]) and 21 days (control weight 0.306 ± 0.053 g vs treated 0.198 ± 0.043 g [P < .01]: control volume 0.285 ± 0.047 mL vs treated 0.148 ± 0.041 mL, [P < .01]). Angiogenesis was delayed in the enoxaparin sodium-treated constructs with the absolute vascular volume significantly decreased at 10 days (control vascular volume 0.029 ± 0.03 mL vs treated 0.012 ± 0.002 mL [P < .05]). Conclusion: In this in vivo tissue engineering model, endogenous, extra-vascularly deposited fibrin volume determines construct size and vascular growth in the first 3 weeks and is, therefore, critical to full construct development.
Resumo:
The role of vascularization in 3-D tissue engineering was studied. Mouse fat, angiogenic growth factors, adult human stem cells and fat tissue have been inserted and subsequent tissue growth was monitored. Human fat grafts or human lipoaspirates in SCID mouse chambers induced mouse fat generation at 6 weeks. Tissue engineering models utilizing intrinsic vascularization have major advantages including rapid and appropriate vascularization of new tissues.
Resumo:
Catchment and riparian degradation has resulted in declining ecosystem health of streams worldwide. With restoration a priority in many regions, there is an increasing interest in the scale at which land use influences stream ecosystem health. Our goal was to use a substantial data set collected as part of a monitoring program (the Southeast Queensland, Australia, Ecological Health Monitoring Program data set, collected at 116 sites over six years) to identify the spatial scale of land use, or the combination of spatial scales, that most strongly influences overall ecosystem health. In addition, we aimed to determine whether the most influential scale differed for different aspects of ecosystem health. We used linear-mixed models and a Bayesian model-averaging approach to generate models for the overall aggregated ecosystem health score and for each of the five component indicators (fish, macroinvertebrates, water quality, nutrients, and ecosystem processes) that make up the score. Dense forest close to the survey site, mid-dense forest in the hydrologically active nearstream areas of the catchment, urbanization in the riparian buffer, and tree cover at the reach scale were all significant in explaining ecosystem health, suggesting an overriding influence of forest cover, particularly close to the stream. Season and antecedent rainfall were also important explanatory variables, with some land-use variables showing significant seasonal interactions. There were also differential influences of land use for each of the component indicators. Our approach is useful given that restoring general ecosystem health is the focus of many stream restoration projects; it allowed us to predict the scale and catchment position of restoration that would result in the greatest improvement of ecosystem health in the regions streams and rivers. The models we generated suggested that good ecosystem health can be maintained in catchments where 80% of hydrologically active areas in close proximity to the stream have mid-dense forest cover and moderate health can be obtained with 60% cover.
Resumo:
Rice, an important crop that feeds more than half of the world's population is very sensitive to salinity stress – a growing problem affecting crop production globally. This PhD study addressed this problem by manipulating the programmed cell death pathways in rice resulting in significant enhancement of salinity stress tolerance. The impact of this work is that farmers would be in a position to grow rice containing such a trait in environments where salinisation of the soil exists, thereby addressing food security needs.
Resumo:
In studies using macroinvertebrates as indicators for monitoring rivers and streams, species level identifications in comparison with lower resolution identifications can have greater information content and result in more reliable site classifications and better capacity to discriminate between sites, yet many such programmes identify specimens to the resolution of family rather than species. This is often because it is cheaper to obtain family level data than species level data. Choice of appropriate taxonomic resolution is a compromise between the cost of obtaining data at high taxonomic resolutions and the loss of information at lower resolutions. Optimum taxonomic resolution should be determined by the information required to address programme objectives. Costs saved in identifying macroinvertebrates to family level may not be justified if family level data can not give the answers required and expending the extra cost to obtain species level data may not be warranted if cheaper family level data retains sufficient information to meet objectives. We investigated the influence of taxonomic resolution and sample quantification (abundance vs. presence/absence) on the representation of aquatic macroinvertebrate species assemblage patterns and species richness estimates. The study was conducted in a physically harsh dryland river system (Condamine-Balonne River system, located in south-western Queensland, Australia), characterised by low macroinvertebrate diversity. Our 29 study sites covered a wide geographic range and a diversity of lotic conditions and this was reflected by differences between sites in macroinvertebrate assemblage composition and richness. The usefulness of expending the extra cost necessary to identify macroinvertebrates to species was quantified via the benefits this higher resolution data offered in its capacity to discriminate between sites and give accurate estimates of site species richness. We found that very little information (<6%) was lost by identifying taxa to family (or genus), as opposed to species, and that quantifying the abundance of taxa provided greater resolution for pattern interpretation than simply noting their presence/absence. Species richness was very well represented by genus, family and order richness, so that each of these could be used as surrogates of species richness if, for example, surveying to identify diversity hot-spots. It is suggested that sharing of common ecological responses among species within higher taxonomic units is the most plausible mechanism for the results. Based on a cost/benefit analysis, family level abundance data is recommended as the best resolution for resolving patterns in macroinvertebrate assemblages in this system. The relevance of these findings are discussed in the context of other low diversity, harsh, dryland river systems.
Resumo:
To better understand how freshwater ecosystems respond to changes in catchment land-use, it is important to develop measures of ecological health that include aspects of both ecosystem structure and function. This study investigated measures of nutrient processes as potential indicators of stream ecosystem health across a land-use gradient from relatively undisturbed to highly modified. A total of seven indicators (potential denitrification; an index of denitrification potential relative to sediment organic matter; benthic algal growth on artificial substrates amended with (a) N only, (b) P only, and (c) N and P; and δ15N of aquatic plants and benthic sediment) were measured at 53 streams in southeast Queensland, Australia. The indicators were evaluated by their response to a defined gradient of agricultural land-use disturbance as well as practical aspects of using the indicators as part of a monitoring program. Regression models based on descriptors of the disturbance gradient explained a large proportion of the variation in six of the seven indicators. Denitrification index, algal growth in N amended substrate, and δ15N of aquatic plants demonstrated the best regression. However, the δ15N value of benthic sediment was found to be the best indicator overall for incorporation into a monitoring program, as samples were relatively easy to collect and process, and were successfully collected at more than 90% of the study sites.
Resumo:
1. Biodiversity, water quality and ecosystem processes in streams are known to be influenced by the terrestrial landscape over a range of spatial and temporal scales. Lumped attributes (i.e. per cent land use) are often used to characterise the condition of the catchment; however, they are not spatially explicit and do not account for the disproportionate influence of land located near the stream or connected by overland flow. 2. We compared seven landscape representation metrics to determine whether accounting for the spatial proximity and hydrological effects of land use can be used to account for additional variability in indicators of stream ecosystem health. The landscape metrics included the following: a lumped metric, four inverse-distance-weighted (IDW) metrics based on distance to the stream or survey site and two modified IDW metrics that also accounted for the level of hydrologic activity (HA-IDW). Ecosystem health data were obtained from the Ecological Health Monitoring Programme in Southeast Queensland, Australia and included measures of fish, invertebrates, physicochemistry and nutrients collected during two seasons over 4 years. Linear models were fitted to the stream indicators and landscape metrics, by season, and compared using an information-theoretic approach. 3. Although no single metric was most suitable for modelling all stream indicators, lumped metrics rarely performed as well as other metric types. Metrics based on proximity to the stream (IDW and HA-IDW) were more suitable for modelling fish indicators, while the HA-IDW metric based on proximity to the survey site generally outperformed others for invertebrates, irrespective of season. There was consistent support for metrics based on proximity to the survey site (IDW or HA-IDW) for all physicochemical indicators during the dry season, while a HA-IDW metric based on proximity to the stream was suitable for five of the six physicochemical indicators in the post-wet season. Only one nutrient indicator was tested and results showed that catchment area had a significant effect on the relationship between land use metrics and algal stable isotope ratios in both seasons. 4. Spatially explicit methods of landscape representation can clearly improve the predictive ability of many empirical models currently used to study the relationship between landscape, habitat and stream condition. A comparison of different metrics may provide clues about causal pathways and mechanistic processes behind correlative relationships and could be used to target restoration efforts strategically.
Resumo:
Community-based protests against major construction and engineering projects are becoming increasingly common as concerns over issues such as corporate social accountability, climate change and corruption become more prominent in the public's mind. Public perceptions of risk associated with these projects can have a contagious effect, which mismanaged can escalate into long-term and sometimes acrimonious protest stand-offs that have negative implications for the community, firms involved and the construction industry as a whole. This paper investigates the role of core group members in sustaining community-based protest against construction and engineering projects. Using a thematic story telling approach which draws on ethnographic method and social contagion theories, it presents an in-depth analysis of a single case study - one of Australia's longest standing community protests against a construction project. It concludes that core group members play a critical role, within anarchic structures which provide a high degree of spontaneity and improvisation, in sustaining movement continuity by building collective identity, mobilising resources and a moving interface which developers find hard to communicate with.
Resumo:
This article describes the first steps toward comprehensive characterization of molecular transport within scaffolds for tissue engineering. The scaffolds were fabricated using a novel melt electrospinning technique capable of constructing 3D lattices of layered polymer fibers with well - defined internal microarchitectures. The general morphology and structure order was then determined using T 2 - weighted magnetic resonance imaging and X - ray microcomputed tomography. Diffusion tensor microimaging was used to measure the time - dependent diffusivity and diffusion anisotropy within the scaffolds. The measured diffusion tensors were anisotropic and consistent with the cross - hatched geometry of the scaffolds: diffusion was least restricted in the direction perpendicular to the fiber layers. The results demonstrate that the cross - hatched scaffold structure preferentially promotes molecular transport vertically through the layers ( z - axis), with more restricted diffusion in the directions of the fiber layers ( x – y plane). Diffusivity in the x – y plane was observed to be invariant to the fiber thickness. The characteristic pore size of the fiber scaffolds can be probed by sampling the diffusion tensor at multiple diffusion times. Prospective application of diffusion tensor imaging for the real - time monitoring of tissue maturation and nutrient transport pathways within tissue engineering scaffolds is discussed.
Resumo:
Natural resource management planning in the Northern Gulf region of Queensland is concerned with ‘how [natural assets] and community aspirations can be protected and enhanced to provide the Northern Gulf community with the economic, social and environmental means to meet the continuing growth of the region in an ecological and economically sustainable way’ (McDonald & Dawson 2004). In the Etheridge Shire, located in the tropical savanna of the Northern Gulf region, two of the activities that influence the balance between economic growth and long-term sustainable development are: 1. the land-use decisions people in the Shire make with regards to their own enterprises. 2. their decisions to engage in civically-minded activities aimed at improving conditions in the region. Land-use decision and engagement in community development activities were chosen for detailed analysis because they are activities for which policies can be devised to improve economic and sustainable development outcomes. Changing the formal and informal rules that guide and govern these two different kinds of decisions that people can make in the Etheridge Shire – the decision to improve one’s own situation and the decision to improve the situation for others in the community – may expand the set of available options for people in the Shire to achieve their goals and aspirations. Identifying appropriate and effective changes in rules requires, first, an understanding of the ‘action arena’, in this case comprised of a diversity of ‘participants’ from both within and outside the Etheridge Shire, and secondly knowledge of ‘action situations’ (land-use decisions and engagement in community development activities) in which stakeholders are involved and/or have a stake. These discussions are presented in sections 4.1.1.1 and 4.1.1.2.
Resumo:
The Wet Tropics region has a unique water asset and is also considered a priority region for the improvement of water quality entering the Great Barrier Reef due to a combination of high rainfall, intensive agricultural use, urban areas and the proximity of valuable reef assets to the coast. Agricultural activities are one of many identified threats to water quality and water flows in the Wet Tropics in terms of sediment and pollutant-related water quality decline. Information describing the current state of agricultural management practices across the region is patchy at best. Based on the best available information on agricultural management practices in the Wet Tropics in 2008, it is clear that opportunities exist to improve nutrient, sediment and pesticide management practice to reduce the impact on the water asset and the Great Barrier Reef. Based on current understandings of practices and the relationship between practices and reef water quality, the greatest opportunities for improved water quality are as follows: · nutrients – correct rate and the placement of fertilisers; · pesticides – improve weed control planning, herbicide rates and calibration practice; and · soil and sediment – implement new farming system practices. The 2008-09 Reef Rescue program sought to accelerate the rate of adoption of improved management practices and through Terrain invested $6.8M in the 2008-09 year for: · landholder water quality improvement incentive payments; · cross regional catchment repair of wetlands and riparian lands in areas of high sediment or nutrient loss; and · partnerships in the region to lever resources and support for on-ground practice change. The program delivered $3,021,999 in onground incentives to landholders in the Wet Tropics to improve farm practices from D or C level to B or A level. The landholder Water Quality Incentives Grants program received 300 individual applications for funding and funded 143 individual landholders to implement practice change across 36,098 ha of farm land. It is estimated that the Reef Rescue program facilitated practice change across 21% of the cane industry, and 20% of the banana industry. The program levered an additional $2,441,166 in landholder cash contributions and a further $907,653 in non-cash in-kind contributions bringing the total project value of the landholder grants program in the Wet Tropics to $6,370,819. Most funded projects targeted multiple water quality objectives with a focus on nutrient and sediment reduction. Of the 143 projects funded, 115 projects addressed nutrient management either as the primary focus or in combination with strategies that targeted other water quality objectives. Overall, 82 projects addressed two or more water quality targets. Forty-five percent of incentive funds were allocated to new farming system practices (direct drill legumes, zonal tillage equipment, permanent beds, min till planting equipment, GPS units, laser levelling), followed by 24% allocated to subsurface fertiliser applicators (subsurface application of fertiliser using a stool splitter or beside the stool, at the correct Six Easy Steps rate). As a result, Terrain estimates that the incentive grants achieved considerable reductions in nitrogen, phosphorus, sediment and pesticide loads. The program supported nutrient management training of 167 growers managing farms covering over 20% of the area harvested in 2008, and 18 industry advisors and resellers. This resulted in 115 growers (155 farms) developing nutrient management plans. The program also supported Integrated Weed Management training of 80 growers managing farms covering 8% of the area harvested in 2008, and 6 industry advisors and resellers. This report, which draws on the best available Reef Rescue Management Monitoring, Evaluation, Reporting, and Improvement (MERI) information to evaluate program performance and impact on water quality outcomes, is the first in a series of annual reports that will assess and evaluate the impact of the Reef Rescue program on agricultural practices and water quality outcomes. The assessment is predominantly focused on the cane industry because of data availability. In the next stage, efforts will expand to: · improve practice data for the banana and grazing industry; · gain a better understanding of the water quality trends and the factors influencing them in the Wet Tropics; in particular work will focus on linking the results of the Paddock to Reef monitoring program and practice change data to assess program impact; · enhance estimations of the impact of practice change on pollutant loads from agricultural land use; · gain a better understanding of the extent of ancillary practice (change not directly funded) resulting from Reef Rescue training/ education/communication programs; and · provide a better understanding of the economic cost of practice change across the Wet Tropics region. From an ecological perspective, water quality trends and the factors that may be contributing to change, require further investigation. There is a critical need to work towards an enhanced understanding of the link between catchment land management practice change and reef water quality, so that reduced nutrient, sediment, and pesticide discharge to the Great Barrier Reef can be quantified. This will also assist with future prioritisation of grants money to agricultural industries, catchments and sub catchments. From a social perspective, the program has delivered significant water quality benefits from landholder education and training. It is believed that these activities are giving landholders the information and tools to implement further lasting change in their production systems and in doing so, creating a change in attitude that is supportive and inclusive of Natural Resource Management (NRM). The program in the Wet Tropics has also considerably strengthened institutional partnerships for NRM, particularly between NRM and industry and extension organisations. As a result of the Reef Rescue program, all institutions are actively working together to collectively improve water quality. The Reef Rescue program is improving water quality entering the Great Barrier Reef Lagoon by catalysing substantial activity in the Wet Tropics region to improve land management practices and reduce the water quality impact of agricultural landscapes. The solid institutional partnerships between the regional body, industry, catchment and government organisations have been fundamental to the successful delivery of the landholder grant and catchment rehabilitation programs. Landholders have generally had a positive perception and reaction to the program, its intent, and the practical, focused nature of grant-based support. Demand in the program was extremely high in 2008-09 and is expected to increase in 2009-2010.
Resumo:
Motivated by the analysis of the Australian Grain Insect Resistance Database (AGIRD), we develop a Bayesian hurdle modelling approach to assess trends in strong resistance of stored grain insects to phosphine over time. The binary response variable from AGIRD indicating presence or absence of strong resistance is characterized by a majority of absence observations and the hurdle model is a two step approach that is useful when analyzing such a binary response dataset. The proposed hurdle model utilizes Bayesian classification trees to firstly identify covariates and covariate levels pertaining to possible presence or absence of strong resistance. Secondly, generalized additive models (GAMs) with spike and slab priors for variable selection are fitted to the subset of the dataset identified from the Bayesian classification tree indicating possibility of presence of strong resistance. From the GAM we assess trends, biosecurity issues and site specific variables influencing the presence of strong resistance using a variable selection approach. The proposed Bayesian hurdle model is compared to its frequentist counterpart, and also to a naive Bayesian approach which fits a GAM to the entire dataset. The Bayesian hurdle model has the benefit of providing a set of good trees for use in the first step and appears to provide enough flexibility to represent the influence of variables on strong resistance compared to the frequentist model, but also captures the subtle changes in the trend that are missed by the frequentist and naive Bayesian models.
Resumo:
Even when no baseline data are available, the impacts of 150 years of livestock grazing on natural grasslands can be assessed using a combined approach of grazing manipulation and regional-scale assessment of the flora. Here, we demonstrate the efficacy of this method across 18 sites in the semidesert Mitchell grasslands of northeastern Australia. Fifteen-year-old exclosures (ungrazed and macropod grazed) revealed that the dominant perennial grasses in the genus Astrebla do not respond negatively to grazing disturbance typical of commercial pastoralism. Neutral, positive, intermediate, and negative responses to grazing disturbance were recorded amongst plant species with no single life-form group associated with any response type. Only one exotic species, Cenchrus ciliaris, was recorded at low frequency. The strongest negative response was from a native annual grass, Chionachne hubbardiana, an example of a species that is highly sensitive to grazing disturbance. Herbarium records revealed only scant evidence that species with a negative response to grazing have declined through the period of commercial pastoralism. A regional analysis identified 14 from a total of 433 plant species in the regional flora that may be rare and potentially threatened by grazing disturbance. However, a targeted survey precluded grazing as a cause of decline for seven of these based on low palatability and positive responses to grazing and other disturbance. Our findings suggest that livestock grazing of semidesert grasslands with a short evolutionary history of ungulate grazing has altered plant composition, but has not caused declines in the dominant perennial grasses or in species richness as predicted by the preceding literature. The biggest impact of commercial pastoralism is the spread of woody leguminous trees that can transform grassland to thorny shrubland. The conservation of plant biodiversity is largely compatible with commercial pastoralism provided these woody weeds are controlled, but reserves strategically positioned within water remote areas are necessary to protect grazing-sensitive species. This study demonstrates that a combination of experimental studies and regional surveys can be used to understand anthropogenic impacts on natural ecosystems where reference habitat is not available.
Resumo:
This project provides a costed and appraised set of management strategies for mitigating threats to species of conservation significance in the Pilbara IBRA bioregion of Western Australia (hereafter 'the Pilbara'). Conservation significant species are either listed under federal and state legislation, international agreements or considered likely to be threatened in the next 20 years. Here we report on the 17 technically and socially feasible management strategies, which were drawn from the collective experience and knowledge of 49 experts and stakeholders in the ecology and management of the Pilbara region. We determine the relative ecological cost-effectiveness of each strategy, calculated as the expected benefit of management to the persistence of 53 key threatened native fauna and flora species, divided by the expected cost of management. Finally we provide decision support to assist prioritisation of the strategies on the basis of ecological cost-effectiveness.