772 resultados para Mutual Information
Resumo:
This paper presents a graph-based method to weight medical concepts in documents for the purposes of information retrieval. Medical concepts are extracted from free-text documents using a state-of-the-art technique that maps n-grams to concepts from the SNOMED CT medical ontology. In our graph-based concept representation, concepts are vertices in a graph built from a document, edges represent associations between concepts. This representation naturally captures dependencies between concepts, an important requirement for interpreting medical text, and a feature lacking in bag-of-words representations. We apply existing graph-based term weighting methods to weight medical concepts. Using concepts rather than terms addresses vocabulary mismatch as well as encapsulates terms belonging to a single medical entity into a single concept. In addition, we further extend previous graph-based approaches by injecting domain knowledge that estimates the importance of a concept within the global medical domain. Retrieval experiments on the TREC Medical Records collection show our method outperforms both term and concept baselines. More generally, this work provides a means of integrating background knowledge contained in medical ontologies into data-driven information retrieval approaches.
Resumo:
Retrieving information from Twitter is always challenging due to its large volume, inconsistent writing and noise. Most existing information retrieval (IR) and text mining methods focus on term-based approach, but suffers from the problems of terms variation such as polysemy and synonymy. This problem deteriorates when such methods are applied on Twitter due to the length limit. Over the years, people have held the hypothesis that pattern-based methods should perform better than term-based methods as it provides more context, but limited studies have been conducted to support such hypothesis especially in Twitter. This paper presents an innovative framework to address the issue of performing IR in microblog. The proposed framework discover patterns in tweets as higher level feature to assign weight for low-level features (i.e. terms) based on their distributions in higher level features. We present the experiment results based on TREC11 microblog dataset and shows that our proposed approach significantly outperforms term-based methods Okapi BM25, TF-IDF and pattern based methods, using precision, recall and F measures.
Resumo:
New technologies and the pace of change in modern society mean changes for classroom teaching and learning. Information and communication technologies (ICTs) feature in everyday life and provide ample opportunities for enhancing classroom programs. This article outlines how ICTs complement curriculum implementation in one year two classroom. It suggests practical strategies demonstrating how teachers can make ICTs work for them and progressively teach children how to make ICTs work for them.
Resumo:
Entity-oriented search has become an essential component of modern search engines. It focuses on retrieving a list of entities or information about the specific entities instead of documents. In this paper, we study the problem of finding entity related information, referred to as attribute-value pairs, that play a significant role in searching target entities. We propose a novel decomposition framework combining reduced relations and the discriminative model, Conditional Random Field (CRF), for automatically finding entity-related attribute-value pairs from free text documents. This decomposition framework allows us to locate potential text fragments and identify the hidden semantics, in the form of attribute-value pairs for user queries. Empirical analysis shows that the decomposition framework outperforms pattern-based approaches due to its capability of effective integration of syntactic and semantic features.
Resumo:
This discussion has outlined a theoretical and pragmatic framework to demonstrate that future research involving the analysis of human performance in surgical should encourage the use of phenomenology to enhance the knowledge base of this area of study. Merging experiential (first-person) and experimental (third-person) methods may possibly help improve research designs and analyses in the investigation of robotics in surgical performance. By relying solely on third-person techniques, the current methodology and interpretation used to analyze human performance in surgical robotics is limited. Recent advances in cognitive science and psychology have also recognized this limitation and have now begun to shift to neurophenomenology. Finally, discussion on recent robotics research presented here demonstrates the potential phenomenology holds for augmenting the methodological and analysis techniques currently used by researchers of human performance in surgical robotics.
Resumo:
Phenomenography is a research approach devised to allow the investigation of varying ways in which people experience aspects of their world. Whilst growing attention is being paid to interpretative research in LIS, it is not always clear how the outcomes of such research can be used in practice. This article explores the potential contribution of phenomenography in advancing the application of phenomenological and hermeneutic frameworks to LIS theory, research and practice. In phenomenography we find a research toll which in revealing variation, uncovers everyday understandings of phenomena and provides outcomes which are readily applicable to professional practice. THe outcomes may be used in human computer interface design, enhancement, implementation and training, in the design and evaluation of services, and in education and training for both end users and information professionals. A proposed research territory for phenomenography in LIS includes investigating qualitative variation in the experienced meaning of: 1) information and its role in society 2) LIS concepts and principles 3) LIS processes and; 4) LIS elements.
Resumo:
This item provides supplementary materials for the paper mentioned in the title, specifically a range of organisms used in the study. The full abstract for the main paper is as follows: Next Generation Sequencing (NGS) technologies have revolutionised molecular biology, allowing clinical sequencing to become a matter of routine. NGS data sets consist of short sequence reads obtained from the machine, given context and meaning through downstream assembly and annotation. For these techniques to operate successfully, the collected reads must be consistent with the assumed species or species group, and not corrupted in some way. The common bacterium Staphylococcus aureus may cause severe and life-threatening infections in humans,with some strains exhibiting antibiotic resistance. In this paper, we apply an SVM classifier to the important problem of distinguishing S. aureus sequencing projects from alternative pathogens, including closely related Staphylococci. Using a sequence k-mer representation, we achieve precision and recall above 95%, implicating features with important functional associations.
Resumo:
The Therapeutic Advice and Information Service was funded by the National Prescribing Service to provide a national drug information service for health professionals working in the community. For ten years the service achieved high levels of client satisfaction, and reached its contracted target of 6000 enquiries about medicines per year, however the service ceased on 30 June 2010.
Resumo:
Strong regulatory pressure and rising public awareness on environmental issues will continue to influence the market demand for sustainable housing for years to come. Despite this potential, the voluntary uptake rate of sustainable practices is not as high as expected within the new built housing industry. This is in contrast to the influx of emerging building technologies, new materials and innovative designs as showcased in office buildings and exemplar homes worldwide. One of the possible reasons for this under-performance is that key stakeholders such as developers, builders and consumers do not fully understand and appreciate the related challenges, risks and opportunities of pursuing sustainability. Therefore, in their professional and business activities, they may not be able to see the tangible and mutual benefits that sustainable housing may bring. This research investigates the multiple challenges to achieving benefits (CABs) from sustainable housing development, and links these factors to the characteristics of key stakeholders in the housing supply chain. It begins with a comparative survey study among seven stakeholder groups in the Australian housing industry, in order to examine the importance and interrelationships of CABs. In-depth interviews then further explore the survey findings with a focus on stakeholder diversity, which leads to the identification of 12 critical mutual-benefit factors and their interrelationship. Based on such a platform, a mutual-benefit framework is developed with the aid of Interpretive Structure Modelling, to identify the patterns of stakeholder benefit materialisation, suggest the priority of critical factors and provide related stakeholder-specific action guidelines for sustainable housing implementation. The study concludes with a case study of two real-life housing projects to test the application of the mutual-benefit framework for improvement. This framework will lead to a shared value of sustainability among stakeholders and improved stakeholder collaboration, which in turn help to break the "circle of blame" for the current under-performance of sustainable housing implementation.
Resumo:
A building information model (BIM) provides a rich representation of a building's design. However, there are many challenges in getting construction-specific information from a BIM, limiting the usability of BIM for construction and other downstream processes. This paper describes a novel approach that utilizes ontology-based feature modeling, automatic feature extraction based on ifcXML, and query processing to extract information relevant to construction practitioners from a given BIM. The feature ontology generically represents construction-specific information that is useful for a broad range of construction management functions. The software prototype uses the ontology to transform the designer-focused BIM into a construction-specific feature-based model (FBM). The formal query methods operate on the FBM to further help construction users to quickly extract the necessary information from a BIM. Our tests demonstrate that this approach provides a richer representation of construction-specific information compared to existing BIM tools.
Resumo:
The design and construction community has shown increasing interest in adopting building information models (BIMs). The richness of information provided by BIMs has the potential to streamline the design and construction processes by enabling enhanced communication, coordination, automation and analysis. However, there are many challenges in extracting construction-specific information out of BIMs. In most cases, construction practitioners have to manually identify the required information, which is inefficient and prone to error, particularly for complex, large-scale projects. This paper describes the process and methods we have formalized to partially automate the extraction and querying of construction-specific information from a BIM. We describe methods for analyzing a BIM to query for spatial information that is relevant for construction practitioners, and that is typically represented implicitly in a BIM. Our approach integrates ifcXML data and other spatial data to develop a richer model for construction users. We employ custom 2D topological XQuery predicates to answer a variety of spatial queries. The validation results demonstrate that this approach provides a richer representation of construction-specific information compared to existing BIM tools.
Resumo:
Crowdsourcing has become a popular approach for capitalizing on the potential of large and open crowds of people external to the organization. While crowdsourcing as a phenomenon is studied in a variety of fields, research mostly focuses on isolated aspects and little is known about the integrated design of crowdsourcing efforts. We introduce a socio-technical systems perspective on crowdsourcing, which provides a deeper understanding of the components and relationships in crowdsourcing systems. By considering the function of crowdsourcing systems within their organizational context, we develop a typology of four distinct system archetypes. We analyze the characteristics of each type and derive a number of design requirements for the respective system components. The paper lays a foundation for IS-based crowdsourcing research, channels related academic work, and helps guiding the study and design of crowdsourcing information systems.
Resumo:
On August 16, 2012 the SIGIR 2012 Workshop on Open Source Information Retrieval was held as part of the SIGIR 2012 conference in Portland, Oregon, USA. There were 2 invited talks, one from industry and one from academia. There were 6 full papers and 6 short papers presented as well as demonstrations of 4 open source tools. Finally there was a lively discussion on future directions for the open source Information Retrieval community. This contribution discusses the events of the workshop and outlines future directions for the community.
Resumo:
This paper describes an innovative platform that facilitates the collection of objective safety data around occurrences at railway level crossings using data sources including forward-facing video, telemetry from trains and geo-referenced asset and survey data. This platform is being developed with support by the Australian rail industry and the Cooperative Research Centre for Rail Innovation. The paper provides a description of the underlying accident causation model, the development methodology and refinement process as well as a description of the data collection platform. The paper concludes with a brief discussion of benefits this project is expected to provide the Australian rail industry.