643 resultados para Mathematical Techniques - Integration
Resumo:
Reliable robotic perception and planning are critical to performing autonomous actions in uncertain, unstructured environments. In field robotic systems, automation is achieved by interpreting exteroceptive sensor information to infer something about the world. This is then mapped to provide a consistent spatial context, so that actions can be planned around the predicted future interaction of the robot and the world. The whole system is as reliable as the weakest link in this chain. In this paper, the term mapping is used broadly to describe the transformation of range-based exteroceptive sensor data (such as LIDAR or stereo vision) to a fixed navigation frame, so that it can be used to form an internal representation of the environment. The coordinate transformation from the sensor frame to the navigation frame is analyzed to produce a spatial error model that captures the dominant geometric and temporal sources of mapping error. This allows the mapping accuracy to be calculated at run time. A generic extrinsic calibration method for exteroceptive range-based sensors is then presented to determine the sensor location and orientation. This allows systematic errors in individual sensors to be minimized, and when multiple sensors are used, it minimizes the systematic contradiction between them to enable reliable multisensor data fusion. The mathematical derivations at the core of this model are not particularly novel or complicated, but the rigorous analysis and application to field robotics seems to be largely absent from the literature to date. The techniques in this paper are simple to implement, and they offer a significant improvement to the accuracy, precision, and integrity of mapped information. Consequently, they should be employed whenever maps are formed from range-based exteroceptive sensor data. © 2009 Wiley Periodicals, Inc.
Resumo:
Dermal wound repair involves complex interactions between cells, cytokines and mechanics to close injuries to the skin. In particular, we investigate the contribution of fibroblasts, myofibroblasts, TGFβ, collagen and local tissue mechanics to wound repair in the human dermis. We develop a morphoelastic model where a realistic representation of tissue mechanics is key, and a fibrocontractive model that involves a reasonable approximation to the true kinetics of the important bioactive species. We use each of these descriptions to elucidate the mechanisms that generate pathologies such as hypertrophic scars, contractures and keloids. We find that for hypertrophic scar and contracture development, factors regulating the myofibroblast phenotype are critical, with heightened myofibroblast activation, reduced myofibroblast apoptosis or prolonged inflammation all predicted as mediators for scar hypertrophy and contractures. Prevention of these pathologies is predicted when myofibroblast apoptosis is induced, myofibroblast activation is blocked or TGFβ is neutralised. To investigate keloid invasion, we develop a caricature representation of the fibrocontractive model and find that TGFβ spread is the driving factor behind keloid growth. Blocking activation of TGFβ is found to cause keloid regression. Thus, we recommend myofibroblasts and TGFβ as targets for clinicians when developing intervention strategies for prevention and cure of fibrotic scars.
Resumo:
While past knowledge-based approaches to service innovation have emphasized the role of integration of knowledge in the provisioning of solutions, these approaches fail to address complexities involved with knowledge integration in project-oriented context, specifically, how the firm’s capability to acquire new knowledge from clients and past project episodes influence the development of new service solutions. Adopting a dynamic capability framework and building on knowledge-based approaches to innovation, this paper presents a conceptual model that captures the interplay of learning capabilities and the knowledge integration capability in the service innovation-based competitive strategy. Implications to theory and directions for future research are discussed.
Resumo:
Visual localization in outdoor environments is often hampered by the natural variation in appearance caused by such things as weather phenomena, diurnal fluctuations in lighting, and seasonal changes. Such changes are global across an environment and, in the case of global light changes and seasonal variation, the change in appearance occurs in a regular, cyclic manner. Visual localization could be greatly improved if it were possible to predict the appearance of a particular location at a particular time, based on the appearance of the location in the past and knowledge of the nature of appearance change over time. In this paper, we investigate whether global appearance changes in an environment can be learned sufficiently to improve visual localization performance. We use time of day as a test case, and generate transformations between morning and afternoon using sample images from a training set. We demonstrate the learned transformation can be generalized from training data and show the resulting visual localization on a test set is improved relative to raw image comparison. The improvement in localization remains when the area is revisited several weeks later.
Resumo:
The study investigated the influence of traffic and land use parameters on metal build-up on urban road surfaces. Mathematical relationships were developed to predict metals originating from fuel combustion and vehicle wear. The analysis undertaken found that nickel and chromium originate from exhaust emissions, lead, copper and zinc from vehicle wear, cadmium from both exhaust and wear and manganese from geogenic sources. Land use does not demonstrate a clear pattern in relation to the metal build-up process, though its inherent characteristics such as traffic activities exert influence. The equation derived for fuel related metal load has high cross-validated coefficient of determination (Q2) and low Standard Error of Cross-Validation (SECV) values indicates that the model is reliable, while the equation derived for wear-related metal load has low Q2 and high SECV values suggesting its use only in preliminary investigations. Relative Prediction Error values for both equations are considered to be well within the error limits for a complex system such as an urban road surface. These equations will be beneficial for developing reliable stormwater treatment strategies in urban areas which specifically focus on mitigation of metal pollution.
Resumo:
Road networks are a national critical infrastructure. The road assets need to be monitored and maintained efficiently as their conditions deteriorate over time. The condition of one of such assets, road pavement, plays a major role in the road network maintenance programmes. Pavement conditions depend upon many factors such as pavement types, traffic and environmental conditions. This paper presents a data analytics case study for assessing the factors affecting the pavement deflection values measured by the traffic speed deflectometer (TSD) device. The analytics process includes acquisition and integration of data from multiple sources, data pre-processing, mining useful information from them and utilising data mining outputs for knowledge deployment. Data mining techniques are able to show how TSD outputs vary in different roads, traffic and environmental conditions. The generated data mining models map the TSD outputs to some classes and define correction factors for each class.
Resumo:
Exact solutions of partial differential equation models describing the transport and decay of single and coupled multispecies problems can provide insight into the fate and transport of solutes in saturated aquifers. Most previous analytical solutions are based on integral transform techniques, meaning that the initial condition is restricted in the sense that the choice of initial condition has an important impact on whether or not the inverse transform can be calculated exactly. In this work we describe and implement a technique that produces exact solutions for single and multispecies reactive transport problems with more general, smooth initial conditions. We achieve this by using a different method to invert a Laplace transform which produces a power series solution. To demonstrate the utility of this technique, we apply it to two example problems with initial conditions that cannot be solved exactly using traditional transform techniques.
Resumo:
Many model-based investigation techniques, such as sensitivity analysis, optimization, and statistical inference, require a large number of model evaluations to be performed at different input and/or parameter values. This limits the application of these techniques to models that can be implemented in computationally efficient computer codes. Emulators, by providing efficient interpolation between outputs of deterministic simulation models, can considerably extend the field of applicability of such computationally demanding techniques. So far, the dominant techniques for developing emulators have been priors in the form of Gaussian stochastic processes (GASP) that were conditioned with a design data set of inputs and corresponding model outputs. In the context of dynamic models, this approach has two essential disadvantages: (i) these emulators do not consider our knowledge of the structure of the model, and (ii) they run into numerical difficulties if there are a large number of closely spaced input points as is often the case in the time dimension of dynamic models. To address both of these problems, a new concept of developing emulators for dynamic models is proposed. This concept is based on a prior that combines a simplified linear state space model of the temporal evolution of the dynamic model with Gaussian stochastic processes for the innovation terms as functions of model parameters and/or inputs. These innovation terms are intended to correct the error of the linear model at each output step. Conditioning this prior to the design data set is done by Kalman smoothing. This leads to an efficient emulator that, due to the consideration of our knowledge about dominant mechanisms built into the simulation model, can be expected to outperform purely statistical emulators at least in cases in which the design data set is small. The feasibility and potential difficulties of the proposed approach are demonstrated by the application to a simple hydrological model.
Resumo:
An important aspect of decision support systems involves applying sophisticated and flexible statistical models to real datasets and communicating these results to decision makers in interpretable ways. An important class of problem is the modelling of incidence such as fire, disease etc. Models of incidence known as point processes or Cox processes are particularly challenging as they are ‘doubly stochastic’ i.e. obtaining the probability mass function of incidents requires two integrals to be evaluated. Existing approaches to the problem either use simple models that obtain predictions using plug-in point estimates and do not distinguish between Cox processes and density estimation but do use sophisticated 3D visualization for interpretation. Alternatively other work employs sophisticated non-parametric Bayesian Cox process models, but do not use visualization to render interpretable complex spatial temporal forecasts. The contribution here is to fill this gap by inferring predictive distributions of Gaussian-log Cox processes and rendering them using state of the art 3D visualization techniques. This requires performing inference on an approximation of the model on a discretized grid of large scale and adapting an existing spatial-diurnal kernel to the log Gaussian Cox process context.
Resumo:
This study attempts to develop a better understanding of the challenges of knowledge integration (KI) within the innovation process in Small and Medium Enterprises (SMEs). Using several case studies, this study investigates how knowledge integration may be managed within the context of innovation in SMEs. The research places particular focus on identifying the challenges of knowledge integration in SMEs in relation to three aspects of knowledge integration activities, namely knowledge identification, knowledge acquisition, and knowledge sharing. Four distinct tasks emerged in the knowledge integration process, namely team building capability, capturing tacit knowledge, role of knowledge management (KM) systems, and technological systemic integration. The paper suggests that managing knowledge integration in SMEs can be best managed by focusing on these four tasks, which in turn will lead to innovation.
Resumo:
Capability development is at the heart of creating competitive advantage. This thesis intends to conceptualise Strategic Capability Development as a renewal of an organisation's existing capability in line with the requirements of the market. It followed and compared four product innovation projects within Iran Khodro Company (IKCO), an exemplar of capability development within the Iranian Auto industry. Findings show that the maturation of strategic capability at the organisational level has occurred through a sequence of product innovation projects and by dynamically shaping the learning and knowledge integration processes in accordance with emergence of the new structure within the industry. Accordingly, Strategic Capability Development is conceptualised in an interpretive model. Such findings are useful for development of an explanatory model and a practical capability development framework for managing learning and knowledge across different product innovation projects.
Resumo:
Aim The aim of this paper is to offer an alternative knowing-how knowing-that framework of nursing knowledge, which in the past has been accepted as the provenance of advanced practice. Background The concept of advancing practice is central to the development of nursing practice and has been seen to take on many different forms depending on its use in context. To many it has become synonymous with the work of the advanced or expert practitioner; others have viewed it as a process of continuing professional development and skills acquisition. Moreover, it is becoming closely linked with practice development. However, there is much discussion as to what constitutes the knowledge necessary for advancing and advanced practice, and it has been suggested that theoretical and practical knowledge form the cornerstone of advanced knowledge. Design The design of this article takes a discursive approach as to the meaning and integration of knowledge within the context of advancing nursing practice. Method A thematic analysis of the current discourse relating to knowledge integration models in an advancing and advanced practice arena was used to identify concurrent themes relating to the knowing-how knowing-that framework which commonly used to classify the knowledge necessary for advanced nursing practice. Conclusion There is a dichotomy as to what constitutes knowledge for advanced and advancing practice. Several authors have offered a variety of differing models, yet it is the application and integration of theoretical and practical knowledge that defines and develops the advancement of nursing practice. An alternative framework offered here may allow differences in the way that nursing knowledge important for advancing practice is perceived, developed and coordinated. Relevance to clinical practice What has inevitably been neglected is that there are various other variables which when transposed into the existing knowing-how knowing-that framework allows for advanced knowledge to be better defined. One of the more notable variables is pattern recognition, which became the focus of Benner’s work on expert practice. Therefore, if this is included into the knowing-how knowing-that framework, the knowing-how becomes the knowledge that contributes to advancing and advanced practice and the knowing-that becomes the governing action based on a deeper understanding of the problem or issue.
Resumo:
Aim The aim of this paper was to discuss the potential development of a conceptual model of knowledge integration pertinent to critical care nursing practice. A review of the literature identified that reflective practice appeared to be at the forefront of professional development. Background It could be argued that advancing practice in critical care has been superseded by the advanced practice agenda. Some would suggest that advancing practice is focused on the core attributes of an individual’s practice, which then leads onto advanced practice status. However, advancing practice is more of a process than identifiable skills and as such is often negated when viewing the development of practitioners to the advanced practice level. For example, practice development initiatives can be seen as advancing practice for the masses, which ensures that practitioners are following the same level and practice of care. The question here is, are they developing individually? Relevance to clinical practice What this paper presents is that reflection may not be best suited to advancing practice if the individual practitioner does not have a sound knowledge base both theoretically and experientially. The knowledge integration model presented in this study uses multiple learning strategies that are focused in practice to develop practice, e.g. the use of work-based learning and clinical supervision. To demonstrate the models application, an exemplar of an issue from practice shows its relevance from a practical perspective. Conclusions In conclusion, further knowledge acquisition and its relationship with previously held theory and experience will enable individual practitioners to advance their own practice as well as being a resource for others.
Resumo:
Significant attention has been given in urban policy literature to the integration of land-use and transport planning and policies—with a view to curbing sprawling urban form and diminishing externalities associated with car-dependent travel patterns. By taking land-use and transport interaction into account, this debate mainly focuses on how a successful integration can contribute to societal well-being, providing efficient and balanced economic growth while accomplishing the goal of developing sustainable urban environments and communities. The integration is also a focal theme of contemporary urban development models, such as smart growth, liveable neighbourhoods, and new urbanism. Even though available planning policy options for ameliorating urban form and transport-related externalities have matured—owing to growing research and practice worldwide—there remains a lack of suitable evaluation models to reflect on the current status of urban form and travel problems or on the success of implemented integration policies. In this study we explore the applicability of indicator-based spatial indexing to assess land-use and transport integration at the neighbourhood level. For this, a spatial index is developed by a number of indicators compiled from international studies and trialled in Gold Coast, Queensland, Australia. The results of this modelling study reveal that it is possible to propose an effective metric to determine the success level of city plans considering their sustainability performance via composite indicator methodology. The model proved useful in demarcating areas where planning intervention is applicable, and in identifying the most suitable locations for future urban development and plan amendments. Lastly, we integrate variance-based sensitivity analysis with the spatial indexing method, and discuss the applicability of the model in other urban contexts.
Resumo:
Polarisation diversity is a technique to improve the quality of mobile communications, but its reliability is suboptimal because it depends on the mobile channel and the antenna orientations at both ends of the mobile link. A method to optimise the reliability is established by minimising the dependency on antenna orientations. While the mobile base station can have fixed antenna orientation, the mobile terminal is typically a handheld device with random orientations. This means orientation invariance needs to be established at the receiver in the downlink, and at the transmitter in the uplink. This research presents separate solutions for both cases, and is based on the transmission of an elliptically polarised signal synthesised from the channel statistics. Complete receiver orientation invariance is achieved in the downlink. Effects of the transmitter orientation are minimised in the uplink.