577 resultados para Finite Queueing Systems
Resumo:
This paper reports a summary of key findings from an examination of Information Systems decision making in four organisations. The study focused on what factors influenced decision makers during the critical preimplementation phase of Information Systems projects when systems were evaluated, selected and acquired. Using data gathered from interviews and organisational documentation, a critical hermeneutic analysis was performed in order to build an understanding of how informational and contextual influences acted on decision makers. Eight broad themes of factors were identified as having influence on decision makers and outcomes.
Resumo:
Many Enterprise Systems (ES) projects have reported nil or detrimental impacts despite the substantial investment in the system. Having expected positive outcomes for the organization and its functions through the weighty spend, the effective management of ES-related knowledge has been suggested as a critical success factor for these ES projects in ES implementations. This paper suggests theoretical views purporting the importance of understanding on knowledge management for ES success. To explain the complex, dynamic and multifaceted of knowledge management, we adopt the concepts in Learning Network Theory. We then conceptualized the impact of knowledge management on ES by analyzing five case studies in several industries in India, based on the Knowledge-based Theory of the Firm that captures the performance of the system.
Resumo:
A diagnostic method based on Bayesian Networks (probabilistic graphical models) is presented. Unlike conventional diagnostic approaches, in this method instead of focusing on system residuals at one or a few operating points, diagnosis is done by analyzing system behavior patterns over a window of operation. It is shown how this approach can loosen the dependency of diagnostic methods on precise system modeling while maintaining the desired characteristics of fault detection and diagnosis (FDD) tools (fault isolation, robustness, adaptability, and scalability) at a satisfactory level. As an example, the method is applied to fault diagnosis in HVAC systems, an area with considerable modeling and sensor network constraints.
Resumo:
As the graphics race subsides and gamers grow weary of predictable and deterministic game characters, game developers must put aside their “old faithful” finite state machines and look to more advanced techniques that give the users the gaming experience they crave. The next industry breakthrough will be with characters that behave realistically and that can learn and adapt, rather than more polygons, higher resolution textures and more frames-per-second. This paper explores the various artificial intelligence techniques that are currently being used by game developers, as well as techniques that are new to the industry. The techniques covered in this paper are finite state machines, scripting, agents, flocking, fuzzy logic and fuzzy state machines decision trees, neural networks, genetic algorithms and extensible AI. This paper introduces each of these technique, explains how they can be applied to games and how commercial games are currently making use of them. Finally, the effectiveness of these techniques and their future role in the industry are evaluated.
Resumo:
Inverse problems based on using experimental data to estimate unknown parameters of a system often arise in biological and chaotic systems. In this paper, we consider parameter estimation in systems biology involving linear and non-linear complex dynamical models, including the Michaelis–Menten enzyme kinetic system, a dynamical model of competence induction in Bacillus subtilis bacteria and a model of feedback bypass in B. subtilis bacteria. We propose some novel techniques for inverse problems. Firstly, we establish an approximation of a non-linear differential algebraic equation that corresponds to the given biological systems. Secondly, we use the Picard contraction mapping, collage methods and numerical integration techniques to convert the parameter estimation into a minimization problem of the parameters. We propose two optimization techniques: a grid approximation method and a modified hybrid Nelder–Mead simplex search and particle swarm optimization (MH-NMSS-PSO) for non-linear parameter estimation. The two techniques are used for parameter estimation in a model of competence induction in B. subtilis bacteria with noisy data. The MH-NMSS-PSO scheme is applied to a dynamical model of competence induction in B. subtilis bacteria based on experimental data and the model for feedback bypass. Numerical results demonstrate the effectiveness of our approach.
Resumo:
Plate elements are used in many engineering applications. In-plane loads and deformations have significant influence on the vibration characteristics of plate elements. Numerous methods have been developed to quantify the effects of in-plane loads and deformations of individual plate elements with different boundary conditions based on their natural frequencies. However, these developments cannot be applied to the plate elements in a structural system as the natural frequency is a global parameter for the entire structure. This highlights the need for a method to quantify in-plane deformations of plate elements in structural framing systems. Motivated by this gap in knowledge, this research has developed a comprehensive vibration based procedure to quantify in-plane deformation of plate elements in a structural framing system. This procedure with its unique capabilities to capture the influence of load migration, boundary conditions and different tributary areas is presented herein and illustrated through examples.
Resumo:
CCTV and surveillance networks are increasingly being used for operational as well as security tasks. One emerging area of technology that lends itself to operational analytics is soft biometrics. Soft biometrics can be used to describe a person and detect them throughout a sparse multi-camera network. This enables them to be used to perform tasks such as determining the time taken to get from point to point, and the paths taken through an environment by detecting and matching people across disjoint views. However, in a busy environment where there are 100's if not 1000's of people such as an airport, attempting to monitor everyone is highly unrealistic. In this paper we propose an average soft biometric, that can be used to identity people who look distinct, and are thus suitable for monitoring through a large, sparse camera network. We demonstrate how an average soft biometric can be used to identify unique people to calculate operational measures such as the time taken to travel from point to point.
Resumo:
Recently the application of the quasi-steady-state approximation (QSSA) to the stochastic simulation algorithm (SSA) was suggested for the purpose of speeding up stochastic simulations of chemical systems that involve both relatively fast and slow chemical reactions [Rao and Arkin, J. Chem. Phys. 118, 4999 (2003)] and further work has led to the nested and slow-scale SSA. Improved numerical efficiency is obtained by respecting the vastly different time scales characterizing the system and then by advancing only the slow reactions exactly, based on a suitable approximation to the fast reactions. We considerably extend these works by applying the QSSA to numerical methods for the direct solution of the chemical master equation (CME) and, in particular, to the finite state projection algorithm [Munsky and Khammash, J. Chem. Phys. 124, 044104 (2006)], in conjunction with Krylov methods. In addition, we point out some important connections to the literature on the (deterministic) total QSSA (tQSSA) and place the stochastic analogue of the QSSA within the more general framework of aggregation of Markov processes. We demonstrate the new methods on four examples: Michaelis–Menten enzyme kinetics, double phosphorylation, the Goldbeter–Koshland switch, and the mitogen activated protein kinase cascade. Overall, we report dramatic improvements by applying the tQSSA to the CME solver.
Resumo:
Spatially resolved cathodoluminescence (CL) study of a ZnO nanonail, having thin shank, tapered neck, and hexagonal head sections, is reported. Monochromatic imaging and line scan profiling indicate that the wave guiding and leaking from growth imperfections in addition to the oxygen deficiency variation determine the spatial contrast of CL emissions. Occurrence of resonance peaks at identical wavelengths regardless of CL-excitation spots is inconsistent with the whispering-gallery mode (WGM) resonances of a two-dimensional cavity in the finite difference time domain simulation. However, three dimensioanl cavity simulation produced WGM peaks that are consistent with the experimental spectra, including transverse-electric resonances that are comparable to transverse-magnetic ones.
Resumo:
There is no doubt that fraud in relation to land transactions is a problem that resonates amongst land academics, practitioners, and stakeholders involved in conveyancing. As each land registration and conveyancing process increasingly moves towards a fully electronic environment, we need to make sure that we understand and guard against the frauds that can occur. What this paper does is examine the types of fraud that have occurred in paper-based conveyancing systems in Australia and considers how they might be undertaken in the National Electronic Conveyancing System (NECS) that is currently under development. Whilst no system can ever be infallible, it is suggested that by correctly imposing the responsibility for identity verification on the appropriate individual, the conveyancing system adopted can achieve the optimum level of fairness in terms of allocation of responsibility and loss. As we sit on the cusp of a new era of electronic conveyancing, the framework suggested here provides a model for minimising the risks of forged mortgages and appropriately allocating the loss. Importantly it also recognises that the electronic environment will see new opportunities for those with criminal intent to undermine the integrity of land transactions. An appreciation of this now, can see the appropriate measures put in place to minimise the risk.
Resumo:
Over less than a decade, we have witnessed a seismic shift in the way knowledge is produced and exchanged. This is opening up new opportunities for civic and community engagement, entrepreneurial behaviour, sustainability initiatives and creative practices. It also has the potential to create fresh challenges in areas of privacy, cyber-security and misuse of data and personal information. The field of urban informatics focuses on the use and impacts of digital media technology in urban environments. Urban informatics is a dynamic and cross-disciplinary area of inquiry that encapsulates social media, ubiquitous computing, mobile applications and location-based services. Its insights suggest the emergence of a new economic force with the potential for driving innovation, wealth and prosperity through technological advances, digital media and online networks that affect patterns of both social and economic development. Urban informatics explores the intersections between people, place and technology, and their implications for creativity, innovation and engagement. This paper examines how the key learnings from this field can be used to position creative and cultural institutions such as galleries, libraries, archives and museums (GLAM) to take advantage of the opportunities presented by these changing social and technological developments. This paper introduces the underlying principles, concepts and research areas of urban informatics, against the backdrop of modern knowledge economies. Both theoretical ideas and empirical examples are covered in this paper. The first part discusses three challenges: a. People, and the challenge of creativity: The paper explores the opportunities and challenges of urban informatics that can lead to the design and development of new tools, methods and applications fostering participation, the democratisation of knowledge, and new creative practices. b. Technology, and the challenge of innovation: The paper examines how urban informatics can be applied to support user-led innovation with a view to promoting entrepreneurial ideas and creative industries. c. Place, and the challenge of engagement: The paper discusses the potential to establish place-based applications of urban informatics, using the example of library spaces designed to deliver community and civic engagement strategies. The discussion of these challenges is illustrated by a review of projects as examples drawn from diverse fields such as urban computing, locative media, community activism, and sustainability initiatives. The second part of the paper introduces an empirically grounded case study that responds to these three challenges: The Edge, the Queensland Government’s Digital Culture Centre which is an initiative of the State Library of Queensland to explore the nexus of technology and culture in an urban environment. The paper not only explores the new role of libraries in the knowledge economy, but also how the application of urban informatics in prototype engagement spaces such as The Edge can provide transferable insights that can inform the design and development of responsive and inclusive new library spaces elsewhere. To set the scene and background, the paper begins by drawing the bigger picture and outlining some key characteristics of the knowledge economy and the role that the creative and cultural industries play in it, grasping new opportunities that can contribute to the prosperity of Australia.