538 resultados para Driving.
Resumo:
Finite element analyses of the human body in seated postures requires digital models capable of providing accurate and precise prediction of the tissue-level response of the body in the seated posture. To achieve such models, the human anatomy must be represented with high fidelity. This information can readily be defined using medical imaging techniques such as Magnetic Resonance Imaging (MRI) or Computed Tomography (CT). Current practices for constructing digital human models, based on the magnetic resonance (MR) images, in a lying down (supine) posture have reduced the error in the geometric representation of human anatomy relative to reconstructions based on data from cadaveric studies. Nonetheless, the significant differences between seated and supine postures in segment orientation, soft-tissue deformation and soft tissue strain create a need for data obtained in postures more similar to the application posture. In this study, we present a novel method for creating digital human models based on seated MR data. An adult-male volunteer was scanned in a simulated driving posture using a FONAR 0.6T upright MRI scanner with a T1 scanning protocol. To compensate for unavoidable image distortion near the edges of the study, images of the same anatomical structures were obtained in transverse and sagittal planes. Combinations of transverse and sagittal images were used to reconstruct the major anatomical features from the buttocks through the knees, including bone, muscle and fat tissue perimeters, using Solidworks® software. For each MR image, B-splines were created as contours for the anatomical structures of interest, and LOFT commands were used to interpolate between the generated Bsplines. The reconstruction of the pelvis, from MR data, was enhanced by the use of a template model generated in previous work CT images. A non-rigid registration algorithm was used to fit the pelvis template into the MR data. Additionally, MR image processing was conducted to both the left and the right sides of the model due to the intended asymmetric posture of the volunteer during the MR measurements. The presented subject-specific, three-dimensional model of the buttocks and thighs will add value to optimisation cycles in automotive seat development when used in simulating human interaction with automotive seats.
Resumo:
The Cardiac Access-Remoteness Index of Australia (Cardiac ARIA) used geographic information systems (GIS) to model population level, road network accessibility to cardiac services before and after a cardiac event for all (20,387) population localities in Australia., The index ranged from 1A (access to all cardiac services within 1 h driving time) to 8E (limited or no access). The methodology derived an objective geographic measure of accessibility to required cardiac services across Australia. Approximately 71% of the 2006 Australian population had very good access to acute hospital services and services after hospital discharge. This GIS model could be applied to other regions or health conditions where spatially enabled data were available.
Resumo:
Recognising that creativity is a major driving force in the post-industrial economy, the Chinese government has recently established a range of "creative clusters" – industrial parks devoted to media industries, and arts districts – in order to promote the development of the creative industries. This book examines these new creative clusters, outlining their nature and purpose, and assessing their effectiveness. Drawing on case studies of a range of cluster models, and comparing them with international examples, the book demonstrates that creativity, both in China and internationally, is in fact a process of fitting new ideas to existing patterns, models and formats. It shows how large and exceptionally impressive creative clusters have been successfully established, but raises the important questions of whether profit or culture is the driving force, and of whether the bringing together of independent-minded, creative people, entrepreneurial businessmen, preferential policies and foreign investment may in time lead to unintended changes in social and political attitudes in China, including a weakening of state bureaucratic power. An important contribution to the existing literature on the subject, this book will be of great interest to scholars of urban studies, cultural geography, cultural economics and Asian studies.
Resumo:
In order to gain a competitive edge in the market, automotive manufacturers and automotive seat suppliers have identified seat ergonomics for further development to improve overall vehicle comfort. Adjustable lumbar support devices have been offered since long as comfort systems in either a 2-way or 4-way adjustable configuration, although their effect on lumbar strain is not well documented. The effect of a lumbar support on posture and muscular strain, and therefore the relationship between discomfort and comfort device parameter settings, requires clarification. The aim of this paper is to study the effect of a 4-way lumbar support on lower trunk and pelvis muscle activity, pelvic tilt and spine curvature during a car seating activity. 10 healthy subjects (5 m/f; age 19-39) performed a seating activity in a passenger vehicle with seven different static lumbar support positions. The lumbar support was tested in 3 different height positions in relation to the seatback surface centreline (high, centre, low), each having 2 depths positions (lumbar prominence). An extra depth position was added for the centre position. Posture data were collected using a VICON MX motion capture system and NORAXON DTS goniometers and inclinometer. A rigid-body model of an adjustable car seat with four-way adjustable lumbar support was constructed in UGS Siemens NX and connected to a musculoskeletal model of a seated-human, modelled in AnyBody. Wireless electromyography (EMG) was used to calibrate the musculoskeletal model and assess the relationship between (a) muscular strain and lumbar prominence (normal to seatback surface) respective to the lumbar height (alongside seatback surface), (b) hip joint moment and lumbar prominence (normal to seatback surface) respective to lumbar height (alongside seatback surface) and (c) pelvic tilt and lumbar prominence (normal to seatback surface) respective to the lumbar height (alongside seatback surface). This study was based on the assumption that the musculoskeletal human model was seated at the correct R-Point (SgRP), determined via the occupant packaging toolkit in the JACK digital human model. The effect of the interaction between the driver/car-seat has been investigated for factors resulting from the presence and adjustment of a 4-way lumbar support. The results obtained show that various seat adjustments, and driver’s lumbar supports can have complex influence on the muscle activation, joint forces and moments, all of which can affect the comfort perception of the driver. This study enables the automotive industry to optimise passenger vehicle seat development and design. It further more supports the evaluation of static postural and dynamic seat comfort in normal everyday driving tasks and can be applied for future car design to reduce investment and improve comfort.
Resumo:
Digital human modelling (DHM) has today matured from research into industrial application. In the automotive domain, DHM has become a commonly used tool in virtual prototyping and human-centred product design. While this generation of DHM supports the ergonomic evaluation of new vehicle design during early design stages of the product, by modelling anthropometry, posture, motion or predicting discomfort, the future of DHM will be dominated by CAE methods, realistic 3D design, and musculoskeletal and soft tissue modelling down to the micro-scale of molecular activity within single muscle fibres. As a driving force for DHM development, the automotive industry has traditionally used human models in the manufacturing sector (production ergonomics, e.g. assembly) and the engineering sector (product ergonomics, e.g. safety, packaging). In product ergonomics applications, DHM share many common characteristics, creating a unique subset of DHM. These models are optimised for a seated posture, interface to a vehicle seat through standardised methods and provide linkages to vehicle controls. As a tool, they need to interface with other analytic instruments and integrate into complex CAD/CAE environments. Important aspects of current DHM research are functional analysis, model integration and task simulation. Digital (virtual, analytic) prototypes or digital mock-ups (DMU) provide expanded support for testing and verification and consider task-dependent performance and motion. Beyond rigid body mechanics, soft tissue modelling is evolving to become standard in future DHM. When addressing advanced issues beyond the physical domain, for example anthropometry and biomechanics, modelling of human behaviours and skills is also integrated into DHM. Latest developments include a more comprehensive approach through implementing perceptual, cognitive and performance models, representing human behaviour on a non-physiologic level. Through integration of algorithms from the artificial intelligence domain, a vision of the virtual human is emerging.
Resumo:
Purpose: Young novice drivers continue to be overrepresented in fatalities and injuries arising from crashes even with the introduction of countermeasures such as graduated driver licensing (GDL). Enhancing countermeasures requires a better understanding of the variables influencing risky driving. One of the most common risky behaviours performed by drivers of all ages is speeding, which is particularly risky for young novice drivers who, due to their driving inexperience, have difficulty in identifying and responding appropriately to road hazards. Psychosocial theory can improve our understanding of contributors to speeding, thereby informing countermeasure development and evaluation. This paper reports an application of Akers’ social learning theory (SLT), augmented by Gerrard and Gibbons’ prototype/willingness model (PWM), in addition to personal characteristics of age, gender, car ownership, and psychological traits/states of anxiety, depression, sensation seeking propensity and reward sensitivity, to examine the influences on self-reported speeding of young novice drivers with a Provisional (intermediate) licence in Queensland, Australia. Method: Young drivers (n = 378) recruited in 2010 for longitudinal research completed two surveys containing the Behaviour of Young Novice Drivers Scale, and reported their attitudes and behaviours as pre-Licence/Learner (Survey 1) and Provisional (Survey 2) drivers and their sociodemographic characteristics. Results: An Akers’ measurement model was created. Hierarchical multiple regressions revealed that (1) personal characteristics (PC) explained 20.3%; (2) the combination of PC and SLT explained 41.1%; and (3) the combination of PC, SLT and PWM explained 53.7% of variance in self-reported speeding. Whilst there appeared to be considerable shared variance, the significant predictors in the final model included gender, car ownership, reward sensitivity, depression, personal attitudes, and Learner speeding. Conclusions: These results highlight the capacity for psychosocial theory to improve our understanding of speeding by young novice drivers, revealing relationships between previous behaviour, attitudes, psychosocial characteristics and speeding. The findings suggest multi-faceted countermeasures should target the risky behaviour of Learners, and Learner supervisors should be encouraged to monitor their Learners’ driving speed. Novice drivers should be discouraged from developing risky attitudes towards speeding.
Resumo:
Scientific efforts to understand and reduce the occurrence of road crashes continue to expand, particularly in the areas of vulnerable road user groups. Three groups that are receiving increasing attention within the literature are younger drivers, motorcyclists and older drivers. These three groups are at an elevated risk of being in a crash or seriously injured, and research continues to focus on the origins of this risk as well as the development of appropriate countermeasures to improve driving outcomes for these cohorts. However, it currently remains unclear what factors produce the largest contribution to crash risk or what countermeasures are likely to produce the greatest long term positive effects on road safety. This paper reviews research that has focused on the personal and environmental factors that increase crash risk for these groups as well as considers direction for future research in the respective areas. A major theme to emerge from this review is that while there is a plethora of individual and situational factors that influence the likelihood of crashes, these factors often combine in an additive manner to exacerbate the risk of both injury and fatality. Additionally, there are a number of risk factors that are pertinent for all three road user groups, particularly age and the level of driving experience. As a result, targeted interventions that address these factors are likely to maximise the flow-on benefits to a wider range of road users. Finally, there is a need for further research that aims to bridge the research-to-practice gap, in order to develop appropriate pathways to ensure that evidenced-based research is directly transferred to effective policies that improve safety outcomes.
Resumo:
The demand for high-speed data services for portable device has become a driving force for development of advanced broadband access technologies. Despite recent advances in broadband wireless technologies, there remain a number of critical issues to be resolved. One of the major concerns is the implementation of compact antennas that can operate in a wide frequency band. Spiral antenna has been used extensively for broadband applications due to its planar structure, wide bandwidth characteristics and circular polarisation. However, the practical implementation of spiral antennas is challenged by its high input characteristic impedance, relatively low gain and the need for balanced feeding structures. Further development of wideband balanced feeding structures for spiral antennas with matching impedance capabilities remain a need. This thesis proposes three wideband feeding systems for spiral antennas which are compatible with wideband array antenna geometries. First, a novel tapered geometry is proposed for a symmetric coplanar waveguide (CPW) to coplanar strip line (CPS) wideband balun. This balun can achieve the unbalanced to balanced transformation while matching the high input impedance of the antenna to a reference impedance of 50 . The discontinuity between CPW and CPS is accommodated by using a radial stub and bond wires. The bandwidth of the balun is improved by appropriately tapering the CPW line instead of using a stepped impedance transformer. Next, the tapered design is applied to an asymmetric CPW to propose a novel asymmetric CPW to CPS wideband balun. The use of asymmetric CPW does away with the discontinuities between CPW and CPS without having to use a radial stub or bond wires. Finally, a tapered microstrip line to parallel striplines balun is proposed. The balun consists of two sections. One section is the parallel striplines which are connected to the antenna, with the impedance of balanced line equal to the antenna input impedance. The other section consists of a microstrip line where the width of the ground plane is gradually reduced to eventually resemble a parallel stripline. The taper accomplishes the mode and impedance transformation. This balun has significantly improved bandwidth characteristics. Characteristics of proposed feeding structures are measured in a back-to-back configuration and compared to simulated results. The simulated and measured results show the tapered microstrip to parallel striplines balun to have more than three octaves of bandwidth. The tapered microstrip line to parallel striplines balun is integrated with a single Archimedean spiral antenna and with an array of spiral antennas. The performance of the integrated structures is simulated with the aid of electromagnetic simulation software, and results are compared to measurements. The back-to-back microstrip to parallel strip balun has a return loss of better than 10 dB over a wide bandwidth from 1.75 to 15 GHz. The performance of the microstrip to parallel strip balun was validated with the spiral antennas. The results show the balun to be an effective mean of feeding network with a low profile and wide bandwidth (2.5 to 15 GHz) for balanced spiral antennas.
Resumo:
Evidence from the infrastructure and building sectors suggests issues of drugs and alcohol and its association with safety risk on construction sites. While most Australian jurisdictions have identified this as a critical safety issue, information is limited regarding the prevalence of alcohol and other drugs in the workplace and there is limited evidential guidance on how to effectively and efficiently address such an issue. A nationally consistent collaborative approach across the construction workforce - involving employers and employees; clients, unions; contractors and sub-contractors is required to engender a cultural change in the construction workforce – in a similar manner to the on-going initiative in securing a cultural change to drink-driving in our society where peer intervention and support is encouraged. A study to address these issues has three key objectives. Firstly, using the standard World Health Organisation Alcohol Use Disorders Identification Test (AUDIT), and a wide ranging set of structured interviews, a national qualitative and quantitative assessment of the use of drugs and alcohol is being undertaken. Secondly, the development of an appropriate industry policy with an adoption of an educative and rehabilitative approach is planned in consultation with employers and employees across the infrastructure and building sectors, with an aim of national adoption. Finally, an industry-specific cultural change management program will be developed through a nationally collaborative approach to reducing the risk of impaired performance on construction sites and increasing workers’ commitment to drugs and alcohol safety. The study outcomes stand to benefit not only occupational health and safety, through a greater understanding of the safety impacts of alcohol and other drugs at work, but also alcohol and drug use as a wider community health issue. This presentation will provide an analysis and discussion of the data collected in objective 1 and how the final results will inform the subsequent phases of the study.
Resumo:
“Spin” borrows idioms and metaphors from sports commentary and squeezes them into a single emotional rollercoaster. Accompanied by a driving soundtrack, text appears and disappears one word at a time. As the work progresses, multiple words fade in and out at the same time, filling the screen and testing our ability to read and assimilate these well-worn phrases. On the one hand, the work mimes some of what we enjoy about sport – its ability to take us to another place, to incite passion and emotion, and to enable us to share in common experiences, goals and desires. On the other hand, it plays up the hyperbolic language often associated with sports broadcasting. The very language that helps take us to another place, incite passion and make us feel part of something bigger than ourselves, is pushed to its extreme and starts to burst at the seams. This work was commissioned for “Kick Off: contemporary video art program” at Metricon Stadium, Gold Coast, and supported by Project Services, Department of Public Works, Queensland Government.
Resumo:
This article examines the place of large studio complexes in plans for the regeneration of inner-city areas of Sydney, Melbourne and Toronto. Recent developments in each city are placed in the context of international audiovisual production dynamics, and are considered in terms of the ways they intersect with a range of policy thinking. They are at once part of particular urban revitalisation agendas, industry development planning, city branding and image-making strategies, and new thinking about film policy at national and sub-national levels. The article views studio complexes through four frames: as particular kinds of studio complex development; as 'locomotives' driving a variety of related industries; as 'stargates' enabling a variety of transformations, including the remediation of contaminated, derelict or outmoded land controlled by public authorities or their agents close to the centre of each city; and as components of the entrepreneurial, internationally oriented city.
Resumo:
Background Excessive speed contributes to the incidence and severity of road crashes. The Theory of Planned Behaviour (TPB) has successfully explained variance in speeding intentions and behaviour. However, studies have shown that more than 40% of the variance in outcome measures of speeding remains unexplained, thus, suggesting additional constructs may help to enhance the TPB’s predictive power. Therefore, this study examined mindfulness; a promising construct which has not yet been tested as an additional TPB predictor. Aims The aims of this study were to explore drivers’ beliefs about speeding in school zones using the extended TPB as a framework and to examine the effect that mindfulness had on driver speeding behaviour in school zones. Methods Australian drivers (N = 17) participated in one of four focus group discussions. The overall sample was comprised of five males and twelve females who were aged between 17 to56 years. All participants were recruited via purposive sampling among 1st year psychology students at a large South East Queensland University. The group discussions took approximately one hour and were guided by a structured interview schedule which sought to elicit drivers’ beliefs, thoughts and opinions on speeding in school zones and the factors which motivate such behaviour. Results Overall, thematic analysis revealed some similar issues emerged across the groups. . In particular and perhaps somewhat unsurprisingly, given public concerns regarding the want to ensure the safety of school children, there was much agreement that speeding in school zones was dangerous and unacceptable. Somewhat paradoxically however, some participants also agreed that they had unintentionally or mindlessly sped in school zones. There were several factors that drivers believed influenced their speeding in school zones including their current mood (e.g., if in a bad mood, anxious, or excited they may be more likely to drive without awareness of, and being attentive to, their driving environment) and the extent to which they were familiar with the environment (i.e., more familiar contexts, more likely to drive mindlessly). Thus, although drivers expressed a belief that speeding in school zones was dangerous and acceptable, the extent to which a driver is mindful does influence whether or not a driver may actually engage in speeding in this context. Discussion and conclusions This study highlights the potential role of mindfulness in helping to explain speeding behaviour in school zones. Mindless drivers may speed unintentionally and while unintentional still be endangering the safety and lives of school children. The findings of this research suggest that unintentional speeding, especially in school zones, may be reduced by countermeasures which heighten the extent to which drivers are mindful of approaching and/or driving through a school zone, such as street markings and engineering measures (e.g.,flashing lights and speed bumps).
Resumo:
Cockatoos are the distinctive family Cacatuidae, a major lineage of the order of parrots (Psittaciformes) and distributed throughout the Australasian region of the world. However, the evolutionary history of cockatoos is not well understood. We investigated the phylogeny of cockatoos based on three mitochondrial and three nuclear DNA genes obtained from 16 of 21 species of Cacatuidae. In addition, five novel mitochondrial genomes were used to estimate time of divergence and our estimates indicate Cacatuidae diverged from Psittacidae approximately 40.7 million years ago (95% CI 51.6–30.3 Ma) during the Eocene. Our data shows Cacatuidae began to diversify approximately 27.9 Ma (95% CI 38.1–18.3 Ma) during the Oligocene. The early to middle Miocene (20–10 Ma) was a significant period in the evolution of modern Australian environments and vegetation, in which a transformation from mainly mesic to xeric habitats (e.g., fire-adapted sclerophyll vegetation and grasslands) occurred. We hypothesize that this environmental transformation was a driving force behind the diversification of cockatoos. A detailed multi-locus molecular phylogeny enabled us to resolve the phylogenetic placements of the Palm Cockatoo (Probosciger aterrimus), Galah (Eolophus roseicapillus), Gang-gang Cockatoo (Callocephalon fimbriatum) and Cockatiel (Nymphicus hollandicus), which have historically been difficult to place within Cacatuidae. When the molecular evidence is analysed in concert with morphology, it is clear that many of the cockatoo species’ diagnostic phenotypic traits such as plumage colour, body size, wing shape and bill morphology have evolved in parallel or convergently across lineages.