585 resultados para cost estimation
Resumo:
A roll-to-roll compatible, high throughput process is reported for the production of highly conductive, transparent planar electrode comprising an interwoven network of silver nanowires and single walled carbon nanotubes imbedded into poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). The planar electrode has a sheet resistance of between 4 and 7 Ω □−1 and a transmission of >86% between 800 and 400 nm with a figure of merit of between 344 and 400 Ω−1. The nanocomposite electrode is highly flexible and retains a low sheet resistance after bending at a radius of 5 mm for up to 500 times without loss. Organic photovoltaic devices containing the planar nanocomposite electrodes had efficiencies of ∼90% of control devices that used indium tin oxide as the transparent conducting electrode.
Resumo:
This paper presents an unmanned aircraft system (UAS) that uses a probabilistic model for autonomous front-on environmental sensing or photography of a target. The system is based on low-cost and readily-available sensor systems in dynamic environments and with the general intent of improving the capabilities of dynamic waypoint-based navigation systems for a low-cost UAS. The behavioural dynamics of target movement for the design of a Kalman filter and Markov model-based prediction algorithm are included. Geometrical concepts and the Haversine formula are applied to the maximum likelihood case in order to make a prediction regarding a future state of a target, thus delivering a new waypoint for autonomous navigation. The results of the application to aerial filming with low-cost UAS are presented, achieving the desired goal of maintained front-on perspective without significant constraint to the route or pace of target movement.
Resumo:
In the past few years, the virtual machine (VM) placement problem has been studied intensively and many algorithms for the VM placement problem have been proposed. However, those proposed VM placement algorithms have not been widely used in today's cloud data centers as they do not consider the migration cost from current VM placement to the new optimal VM placement. As a result, the gain from optimizing VM placement may be less than the loss of the migration cost from current VM placement to the new VM placement. To address this issue, this paper presents a penalty-based genetic algorithm (GA) for the VM placement problem that considers the migration cost in addition to the energy-consumption of the new VM placement and the total inter-VM traffic flow in the new VM placement. The GA has been implemented and evaluated by experiments, and the experimental results show that the GA outperforms two well known algorithms for the VM placement problem.
Resumo:
The design-build (DB) delivery method has been widely used in the United States due to its reputed superior cost and time performance. However, rigorous studies have produced inconclusive support and only in terms of overall results, with few attempts being made to relate project characteristics with performance levels. This paper provides a larger and more finely grained analysis of a set of 418 DB projects from the online project database of the Design-Build Institute of America (DBIA), in terms of the time-overrun rate (TOR), early start rate (ESR), early completion rate (ECR) and cost overrun rate (COR) associated with project type (e.g., commercial/institutional buildings and civil infrastructure projects), owners (e.g., Department of Defense and private corporations), procurement methods (e.g., ‘best value with discussion’ and qualifications-based selection), contract methods (e.g., lump sum and GMP) and LEED levels (e.g., gold and silver). The results show ‘best value with discussion’ to be the dominant procurement method and lump sum the most frequently used contract method. The DB method provides relatively good time performance, with more than 75% of DB projects completed on time or before schedule. However, with more than 50% of DB projects cost overrunning, the DB advantage of cost saving remains uncertain. ANOVA tests indicate that DB projects within different procurement methods have significantly different time performance and that different owner types and contract methods significantly affect cost performance. In addition to contributing to empirical knowledge concerning the cost and time performance of DB projects with new solid evidence from a large sample size, the findings and practical implications of this study are beneficial to owners in understanding the likely schedule and budget implications involved for their particular project characteristics.
Resumo:
Cost estimating is a key task within Quantity Surveyors’ (QS) offices. Provision of an accurate estimate is vital to ensure that the objectives of the client are met by staying within the client’s budget. Building Information Modelling (BIM) is an evolving technology that has gained attention in the construction industries all over the world. Benefits from the use of BIM include cost and time savings if the processes used by the procurement team are adapted to maximise the benefits of BIM. BIM can be used by QSs to automate aspects of quantity take-off and the preparation of estimates, decreasing turnaround time and assist in controlling errors and inaccuracies. The Malaysian government has decided to require the use of BIM for its projects beginning from 2016. However, slow uptake is reported in the use of BIM both within companies and to support collaboration within the Malaysian industry. It has been recommended that QSs to start evaluating the impact of BIM on their practices. This paper reviews the perspectives of QSs in Malaysia towards the use of BIM to achieve more dependable results in their cost estimating practice. The objectives of this paper include identifying strategies in improving practice and potential adoption drivers that lead QSs to BIM usage in their construction projects. From the expert interviews, it was found out that, despite still using traditional methods and not practising BIM, the interviewees still acquire limited knowledge related to BIM. There are some drivers that potentially motivate them to employ BIM in their practices. These include client demands, innovation in traditional methods, speed in estimating costs, reduced time and costs, improvement in practices and self-awareness, efficiency in projects, and competition from other companies. The findings of this paper identify the potential drivers in encouraging Malaysian Quantity Surveyors to exploit BIM in their construction projects.
Resumo:
Individuals with limb amputation fitted with conventional socket-suspended prostheses often experience socket-related discomfort leading to a significant decrease in quality of life. Bone-anchored prostheses are increasingly acknowledged as viable alternative method of attachment of artificial limb. In this case, the prosthesis is attached directly to the residual skeleton through a percutaneous fixation. To date, a few osseointegration fixations are commercially available. Several devices are at different stages of development particularly in Europe and the US. [1-15] Clearly, surgical procedures are currently blooming worldwide. Indeed, Australia and Queensland, in particular, have one of the fastest growing populations. Previous studies involving either screw-type implants or press-fit fixations for bone-anchorage have focused on biomechanics aspects as well as the clinical benefits and safety of the procedure. In principle, bone-anchored prostheses should eliminate lifetime expenses associated with sockets and, consequently, potentially alleviate the financial burden of amputation for governmental organizations. Unfortunately, publications focusing on cost-effectiveness are sparse. In fact, only one study published by Haggstrom et al (2012), reported that “despite significantly fewer visits for prosthetic service the annual mean costs for osseointegrated prostheses were comparable with socket-suspended prostheses”. Consequently, governmental organizations such as Queensland Artificial Limb Services (QALS) are facing a number of challenges while adjusting financial assistance schemes that should be fair and equitable to their clients fitted with bone-anchored prostheses. Clearly, more scientific evidence extracted from governmental databases is needed to further consolidate the analyses of financial burden associated with both methods of attachment (i.e., conventional sockets prostheses, bone-anchored prostheses). The purpose of the presentation will be to share the current outcomes of a cost-analysis study lead by QALS. The specific objectives will be: • To outline methodological avenues to assess the cost-effectiveness of bone-anchored prostheses compared to conventional sockets prostheses, • To highlight the potential obstacles and limitations in cost-effectiveness analyses of bone-anchored prostheses, • To present cohort results of a cost-effectiveness (QALY vs cost) including the determination of fair Incremental cost-effectiveness Ratios (ICER) as well as cost-benefit analysis focusing on the comparing costs and key outcome indicators (e.g., QTFA, TUG, 6MWT, activities of daily living) over QALS funding cycles for both methods of attachment.
Resumo:
BACKGROUND The workgroup of Traffic Psychology is concerned with the social, behavioral, and perceptual aspects that are associated with use and non-use of bicycle helmets, in their various forms and under various cycling conditions. OBJECTIVES The objectives of WG2 are to (1) share current knowledge among the people already working in the field, (2) suggest new ideas for research on and evaluation of the design of bicycle helmets, and (3) discuss options for funding of such research within the individual frameworks of the participants. Areas for research include 3.1. The patterns of use of helmets among different users: children, adults, and sports enthusiasts. 3.2. The use of helmets in different environments: rural roads, urban streets, and bike trails. 3.3. Concerns bicyclists have relative to their safety and convenience and the perceived impact of using helmets on comfort and convenience. 3.4. The benefit of helmets for enhancing visibility, and how variations in helmet design and colors affect daytime, nighttime, and dusktime visibility. 3.5. The role of helmets in the acceptance of city-wide pickup-and-drop-off bicycles. 3.6. The impact of helmets on visual search behaviour of bicyclists.
Resumo:
Stochastic (or random) processes are inherent to numerous fields of human endeavour including engineering, science, and business and finance. This thesis presents multiple novel methods for quickly detecting and estimating uncertainties in several important classes of stochastic processes. The significance of these novel methods is demonstrated by employing them to detect aircraft manoeuvres in video signals in the important application of autonomous mid-air collision avoidance.
Resumo:
Drivers behave in different ways, and these different behaviors are a cause of traffic disturbances. A key objective for simulation tools is to correctly reproduce this variability, in particular for car-following models. From data collection to the sampling of realistic behaviors, a chain of key issues must be addressed. This paper discusses data filtering, robustness of calibration, correlation between parameters, and sampling techniques of acceleration-time continuous car-following models. The robustness of calibration is systematically investigated with an objective function that allows confidence regions around the minimum to be obtained. Then, the correlation between sets of calibrated parameters and the validity of the joint distributions sampling techniques are discussed. This paper confirms the need for adapted calibration and sampling techniques to obtain realistic sets of car-following parameters, which can be used later for simulation purposes.
Resumo:
RFID is an important technology that can be used to create the ubiquitous society. But an RFID system uses open radio frequency signal to transfer information and this leads to pose many serious threats to its privacy and security. In general, the computing and storage resources in an RFID tag are very limited and this makes it difficult to solve its secure and private problems, especially for low-cost RFID tags. In order to ensure the security and privacy of low-cost RFID systems we propose a lightweight authentication protocol based on Hash function. This protocol can ensure forward security and prevent information leakage, location tracing, eavesdropping, replay attack and spoofing. This protocol completes the strong authentication of the reader to the tag by twice authenticating and it only transfers part information of the encrypted tag’s identifier for each session so it is difficult for an adversary to intercept the whole identifier of a tag. This protocol is simple and it takes less computing and storage resources, it is very suitable to some low-cost RFID systems.
Resumo:
Precise satellite orbit and clocks are essential for providing high accuracy real-time PPP (Precise Point Positioning) service. However, by treating the predicted orbits as fixed, the orbital errors may be partially assimilated by the estimated satellite clock and hence impact the positioning solutions. This paper presents the impact analysis of errors in radial and tangential orbital components on the estimation of satellite clocks and PPP through theoretical study and experimental evaluation. The relationship between the compensation of the orbital errors by the satellite clocks and the satellite-station geometry is discussed in details. Based on the satellite clocks estimated with regional station networks of different sizes (∼100, ∼300, ∼500 and ∼700 km in radius), results indicated that the orbital errors compensated by the satellite clock estimates reduce as the size of the network increases. An interesting regional PPP mode based on the broadcast ephemeris and the corresponding estimated satellite clocks is proposed and evaluated through the numerical study. The impact of orbital errors in the broadcast ephemeris has shown to be negligible for PPP users in a regional network of a radius of ∼300 km, with positioning RMS of about 1.4, 1.4 and 3.7 cm for east, north and up component in the post-mission kinematic mode, comparable with 1.3, 1.3 and 3.6 cm using the precise orbits and the corresponding estimated clocks. Compared with the DGPS and RTK positioning, only the estimated satellite clocks are needed to be disseminated to PPP users for this approach. It can significantly alleviate the communication burdens and therefore can be beneficial to the real time applications.
Resumo:
Change point estimation is recognized as an essential tool of root cause analyses within quality control programs as it enables clinical experts to search for potential causes of change in hospital outcomes more effectively. In this paper, we consider estimation of the time when a linear trend disturbance has occurred in survival time following an in-control clinical intervention in the presence of variable patient mix. To model the process and change point, a linear trend in the survival time of patients who underwent cardiac surgery is formulated using hierarchical models in a Bayesian framework. The data are right censored since the monitoring is conducted over a limited follow-up period. We capture the effect of risk factors prior to the surgery using a Weibull accelerated failure time regression model. We use Markov Chain Monte Carlo to obtain posterior distributions of the change point parameters including the location and the slope size of the trend and also corresponding probabilistic intervals and inferences. The performance of the Bayesian estimator is investigated through simulations and the result shows that precise estimates can be obtained when they are used in conjunction with the risk-adjusted survival time cumulative sum control chart (CUSUM) control charts for different trend scenarios. In comparison with the alternatives, step change point model and built-in CUSUM estimator, more accurate and precise estimates are obtained by the proposed Bayesian estimator over linear trends. These superiorities are enhanced when probability quantification, flexibility and generalizability of the Bayesian change point detection model are also considered.
Resumo:
The aim of the study was to examine differences in total body water (TBW) measured using single-frequency (SF) and multi-frequency (MF) modes of bioelectrical impedance spectroscopy (BIS) in children and adults measured in different postures using the deuterium (2H) dilution technique as the reference. Twenty-three boys and 26 adult males underwent assessment of TBW using the dilution technique and BIS measured in supine and standing positions using two frequencies of the SF mode (50 kHz and 100 kHz) and the MF mode. While TBW estimated from the MF mode was comparable, extra-cellular fluid (ECF) and intra-cellular fluid (ICF) values differed significantly (p < 0.01) between the different postures in both groups. In addition, while estimated TBW in adult males using the MF mode was significantly (p < 0.01) greater than the result from the dilution technique, TBW estimated using the SF mode and prediction equation was significantly (p < 0.01) lower in boys. Measurement posture may not affect estimation of TBW in boys and adult males, however, body fluid shifts may still occur. In addition, technical factors, including selection of prediction equation, may be important when TBW is estimated from measured impedance.
Resumo:
This paper presents the development and experimental validation of a prototype system for online estimation and compensation of wind disturbances onboard small Rotorcraft unmanned aerial systems (RUAS). The proposed approach consists of integrating a small pitot-static system onboard the vehicle and using simple but effective algorithms for estimating the wind speed in real time. The baseline flight controller has been augmented with a feed-forward term to compensate for these wind disturbances, thereby improving the flight performance of small RUAS in windy conditions. The paper also investigates the use of online airspeed measurements in a closed-loop for controlling the RUAS forward motion without the aid of a global positioning system (GPS). The results of more than 80 flights with a RUAS confirm the validity of our approach.
Resumo:
Background: Alterations in energy expenditure during activity post head injury has not been investigated due primarily to the difficulty of measurement. Objective: The aim of this study was to compare energy expenditure during activity and body composition of children following acquired brain injury (ABI) with data from a group of normal controls. Design: Energy expenditure was measured using the Cosmed K4b2 in a group of 15 children with ABI and a group of 67 normal children during rest and when walking and running. Mean number of steps taken per 3 min run was also recorded and body composition was measured. Results: The energy expended during walking was not significantly different between both groups. A significant difference was found between the two groups in the energy expended during running and also for the number of steps taken as children with ABI took significantly less steps than the normal controls during a 3 min run. Conclusions: Children with ABI exert more energy per activity than healthy controls when controlled for velocity or distance. However, they expend less energy to walk and run when they are free to choose their own desirable, comfortable pace than normal controls. © 2003 Elsevier Ltd. All rights reserved.