548 resultados para Data security
Resumo:
OBJECTIVES: To compare three different methods of falls reporting and examine the characteristics of the data missing from the hospital incident reporting system. DESIGN: Fourteen-month prospective observational study nested within a randomized controlled trial. SETTING: Rehabilitation, stroke, medical, surgical, and orthopedic wards in Perth and Brisbane, Australia. PARTICIPANTS: Fallers (n5153) who were part of a larger trial (1,206 participants, mean age 75.1 � 11.0). MEASUREMENTS: Three falls events reporting measures: participants’ self-report of fall events, fall events reported in participants’ case notes, and falls events reported through the hospital reporting systems. RESULTS: The three reporting systems identified 245 falls events in total. Participants’ case notes captured 226 (92.2%) falls events, hospital incident reporting systems captured 185 (75.5%) falls events, and participant selfreport captured 147 (60.2%) falls events. Falls events were significantly less likely to be recorded in hospital reporting systems when a participant sustained a subsequent fall, (P5.01) or when the fall occurred in the morning shift (P5.01) or afternoon shift (P5.01). CONCLUSION: Falls data missing from hospital incident report systems are not missing completely at random and therefore will introduce bias in some analyses if the factor investigated is related to whether the data ismissing.Multimodal approaches to collecting falls data are preferable to relying on a single source alone.
Resumo:
Interacting with technology within a vehicle environment using a voice interface can greatly reduce the effects of driver distraction. Most current approaches to this problem only utilise the audio signal, making them susceptible to acoustic noise. An obvious approach to circumvent this is to use the visual modality in addition. However, capturing, storing and distributing audio-visual data in a vehicle environment is very costly and difficult. One current dataset available for such research is the AVICAR [1] database. Unfortunately this database is largely unusable due to timing mismatch between the two streams and in addition, no protocol is available. We have overcome this problem by re-synchronising the streams on the phone-number portion of the dataset and established a protocol for further research. This paper presents the first audio-visual results on this dataset for speaker-independent speech recognition. We hope this will serve as a catalyst for future research in this area.
Resumo:
Being in paid employment is socially valued, and is linked to health, financial security and time use. Issues arising from a lack of occupational choice and control, and from diminished role partnerships are particularly problematic in the lives of people with an intellectual disability. Informal support networks are shown to influence work opportunities for people without disabilities, but their impact on the work experiences of people with disability has not been thoroughly explored. The experience of 'work' and preparation for work was explored with a group of four people with an intellectual disability (the participants) and the key members of their informal support networks (network members) in New South Wales, Australia. Network members and participants were interviewed and participant observations of work and other activities were undertaken. Data analysis included open, conceptual and thematic coding. Data analysis software assisted in managing the large datasets across multiple team members. The insight and actions of network members created and sustained the employment and support opportunities that effectively matched the needs and interests of the participants. Recommendations for future research are outlined.
Resumo:
Client puzzles are meant to act as a defense against denial of service (DoS) attacks by requiring a client to solve some moderately hard problem before being granted access to a resource. However, recent client puzzle difficulty definitions (Stebila and Ustaoglu, 2009; Chen et al., 2009) do not ensure that solving n puzzles is n times harder than solving one puzzle. Motivated by examples of puzzles where this is the case, we present stronger definitions of difficulty for client puzzles that are meaningful in the context of adversaries with more computational power than required to solve a single puzzle. A protocol using strong client puzzles may still not be secure against DoS attacks if the puzzles are not used in a secure manner. We describe a security model for analyzing the DoS resistance of any protocol in the context of client puzzles and give a generic technique for combining any protocol with a strong client puzzle to obtain a DoS-resistant protocol.
Resumo:
Australia’s Arts and Entertainment Sector underpins cultural and social innovation, improves the quality of community life, is essential to maintaining our cities as world class attractors of talent and investment, and helps create ‘Brand Australia’ in the global marketplace of ideas (QUT Creative Industries Faculty 2010). The sector makes a significant contribution to the Australian economy. So what is the size and nature of this contribution? The Creative Industries Faculty at Queensland University of Technology recently conducted an exercise to source and present statistics in order to produce a data picture of Australia’s Arts and Entertainment Sector. The exercise involved gathering the latest statistics on broadcasting, new media, performing arts, and music composition, distribution and publishing as well as Australia’s performance in world markets.
Resumo:
Background: International data on child maltreatment are largely derived from child protection agencies, and predominantly report only substantiated cases of child maltreatment. This approach underestimates the incidence of maltreatment and makes inter-jurisdictional comparisons difficult. There has been a growing recognition of the importance of health professionals in identifying, documenting and reporting suspected child maltreatment. This study aimed to describe the issues around case identification using coded morbidity data, outline methods for selecting and grouping relevant codes, and illustrate patterns of maltreatment identified. Methods: A comprehensive review of the ICD-10-AM classification system was undertaken, including review of index terms, a free text search of tabular volumes, and a review of coding standards pertaining to child maltreatment coding. Identified codes were further categorised into maltreatment types including physical abuse, sexual abuse, emotional or psychological abuse, and neglect. Using these code groupings, one year of Australian hospitalisation data for children under 18 years of age was examined to quantify the proportion of patients identified and to explore the characteristics of cases assigned maltreatment-related codes. Results: Less than 0.5% of children hospitalised in Australia between 2005 and 2006 had a maltreatment code assigned, almost 4% of children with a principal diagnosis of a mental and behavioural disorder and over 1% of children with an injury or poisoning as the principal diagnosis had a maltreatment code assigned. The patterns of children assigned with definitive T74 codes varied by sex and age group. For males selected as having a maltreatment-related presentation, physical abuse was most commonly coded (62.6% of maltreatment cases) while for females selected as having a maltreatment-related presentation, sexual abuse was the most commonly assigned form of maltreatment (52.9% of maltreatment cases). Conclusion: This study has demonstrated that hospital data could provide valuable information for routine monitoring and surveillance of child maltreatment, even in the absence of population-based linked data sources. With national and international calls for a public health response to child maltreatment, better understanding of, investment in and utilisation of our core national routinely collected data sources will enhance the evidence-base needed to support an appropriate response to children at risk.
Resumo:
Background: Internationally, research on child maltreatment-related injuries has been hampered by a lack of available routinely collected health data to identify cases, examine causes, identify risk factors and explore health outcomes. Routinely collected hospital separation data coded using the International Classification of Diseases and Related Health Problems (ICD) system provide an internationally standardised data source for classifying and aggregating diseases, injuries, causes of injuries and related health conditions for statistical purposes. However, there has been limited research to examine the reliability of these data for child maltreatment surveillance purposes. This study examined the reliability of coding of child maltreatment in Queensland, Australia. Methods: A retrospective medical record review and recoding methodology was used to assess the reliability of coding of child maltreatment. A stratified sample of hospitals across Queensland was selected for this study, and a stratified random sample of cases was selected from within those hospitals. Results: In 3.6% of cases the coders disagreed on whether any maltreatment code could be assigned (definite or possible) versus no maltreatment being assigned (unintentional injury), giving a sensitivity of 0.982 and specificity of 0.948. The review of these cases where discrepancies existed revealed that all cases had some indications of risk documented in the records. 15.5% of cases originally assigned a definite or possible maltreatment code, were recoded to a more or less definite strata. In terms of the number and type of maltreatment codes assigned, the auditor assigned a greater number of maltreatment types based on the medical documentation than the original coder assigned (22% of the auditor coded cases had more than one maltreatment type assigned compared to only 6% of the original coded data). The maltreatment types which were the most ‘under-coded’ by the original coder were psychological abuse and neglect. Cases coded with a sexual abuse code showed the highest level of reliability. Conclusion: Given the increasing international attention being given to improving the uniformity of reporting of child-maltreatment related injuries and the emphasis on the better utilisation of routinely collected health data, this study provides an estimate of the reliability of maltreatment-specific ICD-10-AM codes assigned in an inpatient setting.
Resumo:
At QUT research data refers to information that is generated or collected to be used as primary sources in the production of original research results, and which would be required to validate or replicate research findings (Callan, De Vine, & Baker, 2010). Making publicly funded research data discoverable by the broader research community and the public is a key aim of the Australian National Data Service (ANDS). Queensland University of Technology (QUT) has been innovating in this space by undertaking mutually dependant technical and content (metadata) focused projects funded by ANDS. Research Data Librarians identified and described datasets generated from Category 1 funded research at QUT, by interviewing researchers, collecting metadata and fashioning metadata records for upload to the Australian Research Data commons (ARDC) and exposure through the Research Data Australia interface. In parallel to this project, a Research Data Management Service and Metadata hub project were being undertaken by QUT High Performance Computing & Research Support specialists. These projects will collectively store and aggregate QUT’s metadata and research data from multiple repositories and administration systems and contribute metadata directly by OAI-PMH compliant feed to RDA. The pioneering nature of the work has resulted in a collaborative project dynamic where good data management practices and the discoverability and sharing of research data were the shared drivers for all activity. Each project’s development and progress was dependent on feedback from the other. The metadata structure evolved in tandem with the development of the repository and the development of the repository interface responded to meet the needs of the data interview process. The project environment was one of bottom-up collaborative approaches to process and system development which matched top-down strategic alliances crossing organisational boundaries in order to provide the deliverables required by ANDS. This paper showcases the work undertaken at QUT, focusing on the Seeding the Commons project as a case study, and illustrates how the data management projects are interconnected. It describes the processes and systems being established to make QUT research data more visible and the nature of the collaborations between organisational areas required to achieve this. The paper concludes with the Seeding the Commons project outcomes and the contribution this project made to getting more research data ‘out there’.
Resumo:
Operators of busy contemporary airports have to balance tensions between the timely flow of passengers, flight operations, the conduct of commercial business activities and the effective application of security processes. In addition to specific onsite issues airport operators liaise with a range of organisations which set and enforce aviation-related policies and regulations as well as border security agencies responsible for customs, quarantine and immigration, in addition to first response security services. The challenging demands of coordinating and planning in such complex socio-technical contexts place considerable pressure on airport management to facilitate coordination of what are often conflicting goals and expectations among groups that have standing in respect to safe and secure air travel. What are, as yet, significantly unexplored issues in large airports are options for the optimal coordination of efforts from the range of public and private sector participants active in airport security and crisis management. A further aspect of this issue is how airport management systems operate when there is a transition from business-as-usual into an emergency/crisis situation and then, on recovery, back to ‘normal’ functioning. Business Continuity Planning (BCP), incorporating sub-plans for emergency response, continuation of output and recovery of degraded operating capacity, would fit such a context. The implementation of BCP practices in such a significant high security setting offers considerable potential benefit yet entails considerable challenges. This paper presents early results of a 4 year nationally funded industry-based research project examining the merger of Business Continuity Planning and Transport Security Planning as a means of generating capability for improved security and reliability and, ultimately, enhanced resilience in major airports. The project is part of a larger research program on the Design of Secure Airports that includes most of the gazetted ‘first response’ international airports in Australia, key Aviation industry groups and all aviation-related border and security regulators as collaborative partners. The paper examines a number of initial themes in the research, including: ? Approaches to integrating Business Continuity & Aviation Security Planning within airport operations; ? Assessment of gaps in management protocols and operational capacities for identifying and responding to crises within and across critical aviation infrastructure; ? Identification of convergent and divergent approaches to crisis management used across Austral-Asia and their alignment to planned and possible infrastructure evolution.
Resumo:
We define a semantic model for purpose, based on which purpose-based privacy policies can be meaningfully expressed and enforced in a business system. The model is based on the intuition that the purpose of an action is determined by its situation among other inter-related actions. Actions and their relationships can be modeled in the form of an action graph which is based on the business processes in a system. Accordingly, a modal logic and the corresponding model checking algorithm are developed for formal expression of purpose-based policies and verifying whether a particular system complies with them. It is also shown through various examples, how various typical purpose-based policies as well as some new policy types can be expressed and checked using our model.
Resumo:
In automatic facial expression detection, very accurate registration is desired which can be achieved via a deformable model approach where a dense mesh of 60-70 points on the face is used, such as an active appearance model (AAM). However, for applications where manually labeling frames is prohibitive, AAMs do not work well as they do not generalize well to unseen subjects. As such, a more coarse approach is taken for person-independent facial expression detection, where just a couple of key features (such as face and eyes) are tracked using a Viola-Jones type approach. The tracked image is normally post-processed to encode for shift and illumination invariance using a linear bank of filters. Recently, it was shown that this preprocessing step is of no benefit when close to ideal registration has been obtained. In this paper, we present a system based on the Constrained Local Model (CLM) which is a generic or person-independent face alignment algorithm which gains high accuracy. We show these results against the LBP feature extraction on the CK+ and GEMEP datasets.
Resumo:
Decentralised sensor networks typically consist of multiple processing nodes supporting one or more sensors. These nodes are interconnected via wireless communication. Practical applications of Decentralised Data Fusion have generally been restricted to using Gaussian based approaches such as the Kalman or Information Filter This paper proposes the use of Parzen window estimates as an alternate representation to perform Decentralised Data Fusion. It is required that the common information between two nodes be removed from any received estimates before local data fusion may occur Otherwise, estimates may become overconfident due to data incest. A closed form approximation to the division of two estimates is described to enable conservative assimilation of incoming information to a node in a decentralised data fusion network. A simple example of tracking a moving particle with Parzen density estimates is shown to demonstrate how this algorithm allows conservative assimilation of network information.
Resumo:
The aim of this paper is to demonstrate the validity of using Gaussian mixture models (GMM) for representing probabilistic distributions in a decentralised data fusion (DDF) framework. GMMs are a powerful and compact stochastic representation allowing efficient communication of feature properties in large scale decentralised sensor networks. It will be shown that GMMs provide a basis for analytical solutions to the update and prediction operations for general Bayesian filtering. Furthermore, a variant on the Covariance Intersect algorithm for Gaussian mixtures will be presented ensuring a conservative update for the fusion of correlated information between two nodes in the network. In addition, purely visual sensory data will be used to show that decentralised data fusion and tracking of non-Gaussian states observed by multiple autonomous vehicles is feasible.
Applying incremental EM to Bayesian classifiers in the learning of hyperspectral remote sensing data
Resumo:
In this paper, we apply the incremental EM method to Bayesian Network Classifiers to learn and interpret hyperspectral sensor data in robotic planetary missions. Hyperspectral image spectroscopy is an emerging technique for geological investigations from airborne or orbital sensors. Many spacecraft carry spectroscopic equipment as wavelengths outside the visible light in the electromagnetic spectrum give much greater information about an object. The algorithm used is an extension to the standard Expectation Maximisation (EM). The incremental method allows us to learn and interpret the data as they become available. Two Bayesian network classifiers were tested: the Naive Bayes, and the Tree-Augmented-Naive Bayes structures. Our preliminary experiments show that incremental learning with unlabelled data can improve the accuracy of the classifier.