571 resultados para Age, mineral


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone diseases such as rickets and osteoporosis cause significant reduction in bone quantity and quality, which leads to mechanical abnormalities. However, the precise ultrastructural mechanism by which altered bone quality affects mechanical properties is not clearly understood. Here we demonstrate the functional link between altered bone quality (reduced mineralization) and abnormal fibrillar-level mechanics using a novel, real-time synchrotron X-ray nanomechanical imaging method to study a mouse model with rickets due to reduced extrafibrillar mineralization. A previously unreported N-ethyl-N-nitrosourea (ENU) mouse model for hypophosphatemic rickets (Hpr), as a result of missense Trp314Arg mutation of the phosphate regulating gene with homologies to endopeptidase on the X chromosome (Phex) and with features consistent with X-linked hypophosphatemic rickets (XLHR) in man, was investigated using in situ synchrotron small angle X-ray scattering to measure real-time changes in axial periodicity of the nanoscale mineralized fibrils in bone during tensile loading. These determine nanomechanical parameters including fibril elastic modulus and maximum fibril strain. Mineral content was estimated using backscattered electron imaging. A significant reduction of effective fibril modulus and enhancement of maximum fibril strain was found in Hpr mice. Effective fibril modulus and maximum fibril strain in the elastic region increased consistently with age in Hpr and wild-type mice. However, the mean mineral content was ∼21% lower in Hpr mice and was more heterogeneous in its distribution. Our results are consistent with a nanostructural mechanism in which incompletely mineralized fibrils show greater extensibility and lower stiffness, leading to macroscopic outcomes such as greater bone flexibility. Our study demonstrates the value of in situ X-ray nanomechanical imaging in linking the alterations in bone nanostructure to nanoscale mechanical deterioration in a metabolic bone disease. Copyright

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary High bone mineral density on routine dual energy X-ray absorptiometry (DXA) may indicate an underlying skeletal dysplasia. Two hundred fifty-eight individuals with unexplained high bone mass (HBM), 236 relatives (41% with HBM) and 58 spouses were studied. Cases could not float, had mandible enlargement, extra bone, broad frames, larger shoe sizes and increased body mass index (BMI). HBM cases may harbour an underlying genetic disorder. Introduction High bone mineral density is a sporadic incidental finding on routine DXA scanning of apparently asymptomatic individuals. Such individuals may have an underlying skeletal dysplasia, as seen in LRP5 mutations. We aimed to characterize unexplained HBM and determine the potential for an underlying skeletal dysplasia. Methods Two hundred fifty-eight individuals with unexplained HBM (defined as L1 Z-score ≥ +3.2 plus total hip Z-score ≥ +1.2, or total hip Z-score ≥ +3.2) were recruited from 15 UK centres, by screening 335,115 DXA scans. Unexplained HBM affected 0.181% of DXA scans. Next 236 relatives were recruited of whom 94 (41%) had HBM (defined as L1 Z-score + total hip Z-score ≥ +3.2). Fifty-eight spouses were also recruited together with the unaffected relatives as controls. Phenotypes of cases and controls, obtained from clinical assessment, were compared using random-effects linear and logistic regression models, clustered by family, adjusted for confounders, including age and sex. Results Individuals with unexplained HBM had an excess of sinking when swimming (7.11 [3.65, 13.84], p < 0.001; adjusted odds ratio with 95% confidence interval shown), mandible enlargement (4.16 [2.34, 7.39], p < 0.001), extra bone at tendon/ligament insertions (2.07 [1.13, 3.78], p = 0.018) and broad frame (3.55 [2.12, 5.95], p < 0.001). HBM cases also had a larger shoe size (mean difference 0.4 [0.1, 0.7] UK sizes, p = 0.009) and increased BMI (mean difference 2.2 [1.3, 3.1] kg/m 2, p < 0.001). Conclusion Individuals with unexplained HBM have an excess of clinical characteristics associated with skeletal dysplasia and their relatives are commonly affected, suggesting many may harbour an underlying genetic disorder affecting bone mass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P < 5 × 10−8). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral ossification and Wnt signaling pathways. However, we also discovered loci that were localized to genes not known to have a role in bone biology. Fourteen BMD-associated loci were also associated with fracture risk (P < 5 × 10−4, Bonferroni corrected), of which six reached P < 5 × 10−8, including at 18p11.21 (FAM210A), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peak bone mass achieved in adolescence is a determinant of bone mass in later life. In order to identify genetic variants affecting bone mineral density (BMD), we performed a genome-wide association study of BMD and related traits in 1518 children from the Avon Longitudinal Study of Parents and Children (ALSPAC). We compared results with a scan of 134 adults with high or low hip BMD. We identified associations with BMD in an area of chromosome 12 containing the Osterix (SP7) locus, a transcription factor responsible for regulating osteoblast differentiation (ALSPAC: P = 5.8 × 10-4; Australia: P = 3.7 × 10-4). This region has previously shown evidence of association with adult hip and lumbar spine BMD in an Icelandic population, as well as nominal association in a UK population. A meta-analysis of these existing studies revealed strong association between SNPs in the Osterix region and adult lumbar spine BMD (P = 9.9 × 10-11). In light of these findings, we genotyped a further 3692 individuals from ALSPAC who had whole body BMD and confirmed the association in children as well (P = 5.4 × 10-5). Moreover, all SNPs were related to height in ALSPAC children, but not weight or body mass index, and when height was included as a covariate in the regression equation, the association with total body BMD was attenuated. We conclude that genetic variants in the region of Osterix are associated with BMD in children and adults probably through primary effects on growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: Whether the action of estrogen in skeletal development depends on estrogen receptor α as encoded by the ESR1 gene is unknown. Objectives: The aim of this study was to establish whether the gain in area-adjusted bone mineral content (ABMC) in girls occurs in late puberty and to examine whether the magnitude of this gain is related to ESR1 polymorphisms. Design: We conducted a cross-sectional analysis. Setting: The study involved the Avon Longitudinal Study of Parents and Children (ALSPAC), a population-based prospective study. Participants: Participants included 3097 11-yr-olds with DNA samples, dual x-ray absorptiometry measurements, and pubertal stage information. Outcomes: Outcome measures included separate prespecified analyses in boys and girls of the relationship between ABMC derived from total body dual x-ray absorptiometry scans and Tanner stage and of the interaction between ABMC, Tanner stage, and ESR1 polymorphisms. Results: Total body less head and spinal ABMC were higher in girls in Tanner stages 4 and 5, compared with those in Tanner stages 1, 2, and 3. In contrast, height increased throughout puberty. No differences were observed in ABMC according to Tanner stage in boys. For rs2234693 (PvuII) and rs9340799 (XbaI) polymorphisms, differences in spinal ABMC in late puberty were 2-fold greater in girls who were homozygous for the C and G alleles, respectively (P = 0.001). For rs7757956, the difference in total body less head ABMC in late puberty was 50% less in individuals homozygous or heterozygous for the A allele (P = 0.006). Conclusions: Gains in ABMC in late pubertal girls are strongly associated with ESR1 polymorphisms, suggesting that estrogen contributes to this process via an estrogen receptor α-dependent pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differences in genetic control of BMD by skeletal sites and genders were examined by complex segregation analysis in 816 members of 147 families with probands with extreme low BMD. Spine BMD correlated more strongly in male-male comparisons and hip BMD in female-female comparisons, consistent with gender- and site-specificity of BMD heritability. Introduction: Evidence from studies in animals and humans suggests that the genetic control of bone mineral density (BMD) may differ at different skeletal sites and between genders. This question has important implications for the design and interpretation of genetic studies of osteoporosis. Methods: We examined the genetic profile of 147 families with 816 individuals recruited through probands with extreme low BMD (T-score < −2.5, Z-score < −2.0). Complex segregation analysis was performed using the Pedigree Analysis Package. BMD was measured by DXA at both lumbar spine (L1-L4) and femoral neck. Results: Complex segregation analysis excluded purely monogenic and environmental models of segregation of lumbar spine and femoral neck BMD in these families. Pure polygenic models were excluded at the lumbar spine when menopausal status was considered as a covariate, but not at the femoral neck. Mendelian models with a residual polygenic component were not excluded. These models were consistent with the presence of a rare Mendelian genotype of prevalence 3–19 %, causing high BMD at the hip and spine in these families, with additional polygenic effects. Total heritability range at the lumbar spine was 61–67 % and at the femoral neck was 44–67 %. Significant differences in correlation of femoral neck and lumbar spine BMD were observed between male and female relative pairs, with male-male comparisons exhibiting stronger lumbar spine BMD correlation than femoral neck, and female-female comparisons having greater femoral neck BMD correlation than lumbar spine. These findings remained true for parent-offspring correlations when menopausal status was taken into account. The recurrence risk ratio for siblings of probands of a Z-score < −2.0 was 5.4 at the lumbar spine and 5.9 at the femoral neck. Conclusions: These findings support gender- and site-specificity of the inheritance of BMD. These results should be considered in the design and interpretation of genetic studies of osteoporosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic factors are known to influence both the peak bone mass and probably the rate of change in bone density. A range of regulatory and structural genes has been proposed to be involved including collagen 1α1 (COL1A1), the estrogen receptor (ER), and the vitamin D receptor (VDR), but the actual genes involved are uncertain. We therefore studied the role of the COL1A1 and VDR loci in control of bone density by linkage in 45 dizygotic twin pairs and 29 nuclear families comprising 120 individuals. The influences on bone density of polymorphisms of COL1A1, VDR, and ER were studied by association both cross-sectionally and longitudinally in 193 elderly postmenopausal women (average age, 69 years) over a mean follow-up time of 6.3 years. Weak linkage of the COL1A1 locus with bone density was observed in both twins and families (p = 0.02 in both data sets), confirming previous observations of linkage of this locus with bone density. Association between the MscI polymorphism of COL1A1 and rate of lumbar spine bone loss was observed with significant gene-environment interaction related to dietary calcium intake (p = 0.0006). In the lowest tertile of dietary calcium intake, carriers of "s" alleles lost more bone than "SS" homozygotes (p = 0.01), whereas the opposite was observed in the highest dietary calcium intake (p = 0.003). Association also was observed between rate of bone loss at both the femoral neck and the lumbar spine and the TaqI VDR polymorphism (p = 0.03). This association was strongest in those in the lowest tertile of calcium intake, also suggesting the presence of gene-environment interaction involving dietary calcium and VDR, influencing bone turnover. No significant association was observed between the PvuII ER polymorphism alone or in combination with VDR or COL1A1 genotypes, with either bone density or its rate of change. These data support the involvement of COL1A1 in determination of bone density and the interaction of both COL1A1 and VDR with calcium intake in regulation of change of bone density over time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the role of 23 candidate genes in the control of bone mineral density (BMD) by linkage studies in families of probands with osteoporosis (lumbar spine [LS] or femoral neck [FN] BMD T score < -2.5) and low BMD relative to an age- and gender-matched cohort (Z score < -2.0). One hundred and fifteen probands (35 male, 80 female) and 499 of their first- or second-degree relatives (223 males and 276 females) were recruited for the study. BMD was measured at the LS and FN using dual-energy X-ray absorptiometry and expressed as age- and gender-matched Z scores corrected for body mass index. The candidate genes studied were the androgen receptor, type I collagen A1 (COLIA1), COLIA2, COLIIA1, vitamin D receptor (VDR), colony-stimulating factor 1, calcium-sensing receptor, epidermal growth factor (EGF), estrogen receptor 1 (ESR1), fibrillin type 1, insulin-like growth factor 1, interleukin-1 alpha (IL-1α), interleukin-4 (IL-4), interleukin-6 (IL-6), interleukin-11 (IL-11), osteopontin, parathyroid hormone (PTH), PTH-related peptide, PTH receptor type 1 (PTHR1), transforming growth factor-beta 1, and tumor necrosis factors alpha and beta. Sixty-four microsatellites lying close to or within these genes were investigated for linkage with BMD. Using the program MapMaker/Sibs there was suggestive evidence of linkage between BMD and PTHR1 (maximum LOD score obtained [MLS] 2.7-3.5). Moderate evidence of linkage was also observed with EGF (MLS 1.8), COLIA1 (MLS 1.7), COLIIA1/VDR (MLS 1.7), ESR1 (MLS 1.4), IL-1α (MLS 1.4), IL-4 (MLS 1.2), and IL-6 (MLS 1.2). Variance components analysis using the program ACT, correcting for proband-wise ascertainment, also showed evidence of linkage (p ≤0.05) at markers close to or within the candidate genes IL- 1α, PTHR1, IL-6, and COLIIA1/VDR. Further studies will be required to confirm these findings, to refine the location of gene responsible for the observed linkage, and to screen the candidate genes targeted at these loci for mutations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports results from a qualitative evaluation of a compulsory pre-Learner driver education program within the Australian Capital Territory(ACT), Australia. Two methods were used to obtain feedback from those involved in the delivery of the program as well as those who participated in programs. The first, semi-structured interviews, was undertaken with class room teachers who run the program in their schools, group facilitators running the program with more mature-age students at private facilities (n = 15 in total), and former participants in both school-based and private-based versions of the program (n = 19). The second method used an on-line survey for students (n = 79). Results from both methods were consistent with each other, indicating that strengths of the program were perceived as being its interactive components and the high level of engagement of the target audience. There was strong support from young and mature-age students for the program to remain compulsory. However, consistent with other findings on novice driver education, mature-age participants identified that the program was less relevant to them. It may be that to have greater relevance to mature-age learners, content could address and challenge perceptions about behaviours other than intentional high-risk behaviours (e.g. low level speeding, fatigue) as well as encourage planning/strategies to avoid them. While a longer term, outcome focussed, evaluation of the pre-learner education program is needed, this study suggests that the program is well received by pre-licence drivers and that teachers and facilitators perceive it as both effective and beneficial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose To determine whether melanopsin expressing intrinsically photosensitive Retinal Ganglion Cell (ipRGC) inputs to the pupil light reflex (PLR) are affected in early age-related macular degeneration (AMD). Methods The PLR was measured in 40 participants (20 early AMD and 20 age-matched controls) using a custom-built Maxwellian-view pupillometer. Sinusoidal stimuli (0.5 Hz, 11.9 s duration, 35.6° diameter) were presented to the study eye and the consensual pupil response was measured for stimuli with high melanopsin excitation (464nm; blue) and with low melanopsin excitation (638 nm; red) that biased activation to the outer retina. Two melanopsin PLR metrics were quantified: the Phase Amplitude Percentage (PAP) during the sinusoidal stimulus presentation and the Post-Illumination Pupil Response (PIPR). The PLR during stimulus presentation was analyzed using latency to constriction, transient pupil response and maximum pupil constriction metrics. Diagnostic accuracy was evaluated using receiver operating characteristic (ROC) curves. Results The blue PIPR was significantly less sustained in the early AMD group (p<0.001). The red PIPR was not significantly different between groups (p>0.05). The PAP and blue stimulus constriction amplitude were significantly lower in the early AMD group (p < 0.05). There was no significant difference between groups in the latency or transient amplitude for both stimuli (p>0.05). ROC analysis showed excellent diagnostic accuracy for the blue PIPR metrics (AUC>0.9). Conclusions This is the initial report that the melanopsin controlled PIPR is dysfunctional in early AMD. The non-invasive, objective measurement of the ipRGC controlled PIPR has excellent diagnostic accuracy for early AMD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melanopsin containing intrinsically photosensitive Retinal Ganglion cells (ipRGCs) mediate the pupil light reflex (PLR) during light onset and at light offset (the post-illumination pupil response, PIPR). Recent evidence shows that the PLR and PIPR can provide non-invasive, objective markers of age-related retinal and optic nerve disease, however there is no consensus on the effects of healthy ageing or refractive error on the ipRGC mediated pupil function. Here we isolated melanopsin contributions to the pupil control pathway in 59 human participants with no ocular pathology across a range of ages and refractive errors. We show that there is no effect of age or refractive error on ipRGC inputs to the human pupil control pathway. The stability of the ipRGC mediated pupil response across the human lifespan provides a functional correlate of their robustness observed during ageing in rodent models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose Melanopsin-expressing retinal ganglion cells (mRGCs) have non-image forming functions including mediation of the pupil light reflex (PLR). There is limited knowledge about mRGC function in retinal disease. Initial retinal changes in age-related macular degeneration (AMD) occur in the paracentral region where mRGCs have their highest density, making them vulnerable during disease onset. In this cross-sectional clinical study, we measured the PLR to determine if mRGC function is altered in early stages of macular degeneration. Methods Pupil responses were measured in 8 early AMD patients (AREDS 2001 classification; mean age 72.6 ± 7.2 years, 5M, and 3F) and 12 healthy control participants (mean age 66.6 ± 6.1 years, 8M and 4F) using a custom-built Maxwellian-view pupillometer. Stimuli were 0.5 Hz sinewaves (10 s duration, 35.6° diameter) of short wavelength light (464nm, blue; retinal irradiance = 14.5 log quanta.cm-2.s-1) to produce high melanopsin excitation and of long wavelength light (638nm, red; retinal irradiance = 14.9 log quanta.cm-2.s-1), to bias activation to outer retina and provide a control. Baseline pupil diameter was determined during a 10 s pre-stimulus period. The post illumination pupil response (PIPR) was recorded for 40 s. The 6 s PIPR and maximum pupil constriction were expressed as percentage baseline (M ± SD). Results The blue PIPR was significantly less sustained (p<0.01) in the early AMD group (75.49 ± 7.88%) than the control group (58.28 ± 9.05%). The red PIPR was not significantly different (p>0.05) between the early AMD (84.79 ± 4.03%) and control groups (82.01 ± 5.86%). Maximum constriction amplitude in the early AMD group for blue (43.67 ± 6.35%) and red (48.64 ± 6.49%) stimuli were not significantly different to the control group for blue (39.94 ± 3.66%) and red (44.98 ± 3.15%) stimuli (p>0.05). Conclusions These results are suggestive of inner retinal mRGC deficits in early AMD. This non-invasive, objective measure of pupil responses may provide a new method for quantifying mRGC function and monitoring AMD progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Records of shrimp growth and water quality made during 12 crops from each of 48 ponds, over a period of 6.5 years, were provided by a Queensland, Australia, commercial shrimp farm, These data were analysed with a new growth model derived from the Gompertz model. The results indicate that water temperature, mortality and pond age significantly affect growth rates. After 180 days, shrimp reach 34 g at constant 30 degrees C, but only 15 g after the same amount of time at 20 degrees C. Mortality, through thinning the density of shrimp in the ponds, increased the growth rate, but the effect is small. With continual production, growth rates at first remained steady, then appeared to decrease for the sixth and seventh crop, after which they have increased steadily with each crop. It appears that conservative pond management, together with a gradual improvement in husbandry techniques, particularly feed management, brought about this change. This has encouraging implications for the long-term sustainability of the farming methods used. The growth model can be used to predict productivity, and hence, profitability, of new aquaculture locations or new production strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serum immunoreactive cationic trypsinogen levels were determined in 99 control subjects and 381 cystic fibrosis (CF) patients. To evaluate the status of the exocrine pancreas all CF patients had previously undergone fecal fat balance studies and/or pancreatic stimulation tests. Three hundred fourteen CF patients had fat malabsorption and/or had inadequate pancreatic enzyme secretion (pancreatic insufficiency) requiring oral pancreatic enzyme supplements with meals. Sixty-seven CF patients did not have fat malabsorption and/or had adequate enzyme secretion (pancreatic sufficiency) and were not receiving pancreatic enzyme supplements with meals. Mean serum trypsinogen in 99 control subjects was 31.4 ± 14.8 /µg/hter (± 2 SD) and levels did not vary with age or sex. In CF infants (< 2 yr) with pancreatic insufficiency, mean serum trypsinogen was significantly above the non-CF values (p < 0.001). Ninety-one percent of the CF infants had elevated levels. Serum trypsinogen values in the pancreatic insuffi ient group declined steeply up to 5 years, reaching subnormal values by age 6. An equation was developed which described these age-related changes very accurately. Only six CF patients with pancreatic insufficiency had serum trypsinogen levels above the 95% confidence limits of this equation. In contrast, there was no age related decline in serum trypsinogen among the CF group with pancreatic sufficiency. Under 7 yr, serum trypsinogen failed to distinguish the two groups. In those over 7 yr of age, however, serum trypsinogen was significantly higher than the CF group with pancreatic insufficiency (p < 0.001), and 93% had values within or above the control range. In conclusion, serum trypsinogen appears to be a useful screening test for CF in infancy. Between 2 and 7 yr of age this test is of little diagnostic value. After 7 yr of age, serum trypsinogen can reliably distinguish between CF patients with and without pancreatic insufficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serum immunoreactive pancreatic lipase and cationic trypsinogen are elevated in young infants with cystic fibrosis (CF) and may be useful neonatal screening tests for CF. We compared lipase measured by a recently developed ELISA immunoassay with trypsinogen measured by radioimmunoassay in 70 children (ages 0.1 to 9.9 years) with CF who had various degrees of pancreatic dysfunction and in 79 similarly aged children without CF (controls). In the control children, lipase activity increased with advancing age, whereas trypsinogen showed no age-related trend. Lipase and trypsinogen were significantly elevated in the infants with CF who were younger than 1 year, irrespective of pancreatic function (trypsinogen, P<0.001; lipase, P<0.05). Sensitivities in detecting CF were 76% and 90% for lipase and trypsinogen, respectively. After the first year of life, lipase and trypsinogen values declined toward normal, the rate of decline of lipase being greater than that of trypsinogen; 67% of lipase values were within or below the normal range by 3 years, whereas 67% of trypsinogen values continued to be elevated. We conclude that trypsinogen is an excellent screening test for CF in young infants regardless of pancreatic function, and that the addition of a serum pancreatic lipase determination does not improve the accuracy of trypsinogen as a screening test for cystic fibrosis.