620 resultados para skin disease
Resumo:
Qualitative aspects of verbal fluency may be more useful in discerning the precise cause of any quantitative deficits in phonetic or category fluency, especially in the case of mild cognitive impairment (MCI), a possible intermediate stage between normal performance and Alzheimer's disease (AD). The aim of this study was to use both quantitative and qualitative (switches and clusters) methods to compare the phonetic and category verbal fluency performance of elderly adults with no cognitive impairment (n = 51), significant memory impairment (n = 16), and AD (n = 16). As expected, the AD group displayed impairments in all quantitative and qualitative measures of the two fluency tasks relative to their age- and education-matched peers. By contrast, the amnestic MCI group produced fewer animal names on the semantic fluency task than controls and showed normal performance on the phonetic fluency task. The MCI group's inferior category fluency performance was associated with a deficit in their category-switching rate rather than word cluster size. Overall, the results indicate that a semantic measure such as category fluency when used in conjunction with a test of episodic memory may increase the sensitivity for detecting preclinical AD. Future research using external cues and other measures of set shifting capacity may assist in clarifying the origin of the amnestic MCI-specific category-switching deficiency. Copyright
Resumo:
In order to evaluate the capability of 1H MRS to monitor longitudinal changes in subjects with probable Alzheimer's disease (AD), the temporal stability of the metabolite measures N-acetylaspartate and N- acetylaspartylglutamate (NA), total Creatine (Cr), myo-Inositol (mI), total Choline (Chol), NA/Cr, mI/Cr, Chol/Cr and NA/mI were investigated in a cohort of normal older adults. Only the metabolite measures NA, mI, Cr, NA/Cr, mI/Cr, and NA/mI were found to be stable after a mean interval of 260 days. Relative and absolute metabolite measures from a cohort of patients with probable AD were subsequently compared with data from a sample of normal older adult control subjects, and correlated with mental status and the degree of atrophy in the localized voxel. Concentrations of NA, NA/Cr, and NA/mI were significantly reduced in the AD group with concomitant significant increases in mI and mI/Cr. There were no differences between the two groups in measures of Cr, Chol, or Chol/Cr. Significant correlations between mental status as measured by the Mini-Mental State Examination and NA/mI, mI/Cr and NA were found. These metabolite measures were also significantly correlated with the extent of atrophy (as measured by CSF and GM composition) in the spectroscopy voxel.
Resumo:
We detected and mapped a dynamically spreading wave of gray matter loss in the brains of patients with Alzheimer's disease (AD). The loss pattern was visualized in four dimensions as it spread over time from temporal and limbic cortices into frontal and occipital brain regions, sparing sensorimotor cortices. The shifting deficits were asymmetric (left hemisphere > right hemisphere) and correlated with progressively declining cognitive status (p < 0.0006). Novel brain mapping methods allowed us to visualize dynamic patterns of atrophy in 52 high-resolution magnetic resonance image scans of 12 patients with AD (age 68.4 ± 1.9 years) and 14 elderly matched controls (age 71.4 ± 0.9 years) scanned longitudinally (two scans; interscan interval 2.1 ± 0.4 years). A cortical pattern matching technique encoded changes in brain shape and tissue distribution across subjects and time. Cortical atrophy occurred in a well defined sequence as the disease progressed, mirroring the sequence of neurofibrillary tangle accumulation observed in cross sections at autopsy. Advancing deficits were visualized as dynamic maps that change over time. Frontal regions, spared early in the disease, showed pervasive deficits later (< 15% loss). The maps distinguished different phases of AD and differentiated AD from normal aging. Local gray matter loss rates (5.3 ± 2.3% per year in AD v 0.9 ± 0.9% per year in controls) were faster in the left hemisphere (p < 0.029) than the right. Transient barriers to disease progression appeared at limbic/frontal boundaries. This degenerative sequence, observed in vivo as it developed, provides the first quantitative, dynamic visualization of cortical atrophic rates in normal elderly populations and in those with dementia.
Resumo:
We developed an anatomical mapping technique to detect hippocampal and ventricular changes in Alzheimer disease (AD). The resulting maps are sensitive to longitudinal changes in brain structure as the disease progresses. An anatomical surface modeling approach was combined with surface-based statistics to visualize the region and rate of atrophy in serial MRI scans and isolate where these changes link with cognitive decline. Fifty-two high-resolution MRI scans were acquired from 12 AD patients (age: 68.4 ± 1.9 years) and 14 matched controls (age: 71.4 ± 0.9 years), each scanned twice (2.1 ± 0.4 years apart). 3D parametric mesh models of the hippocampus and temporal horns were created in sequential scans and averaged across subjects to identify systematic patterns of atrophy. As an index of radial atrophy, 3D distance fields were generated relating each anatomical surface point to a medial curve threading down the medial axis of each structure. Hippocampal atrophic rates and ventricular expansion were assessed statistically using surface-based permutation testing and were faster in AD than in controls. Using color-coded maps and video sequences, these changes were visualized as they progressed anatomically over time. Additional maps localized regions where atrophic changes linked with cognitive decline. Temporal horn expansion maps were more sensitive to AD progression than maps of hippocampal atrophy, but both maps correlated with clinical deterioration. These quantitative, dynamic visualizations of hippocampal atrophy and ventricular expansion rates in aging and AD may provide a promising measure to track AD progression in drug trials.
Resumo:
We recently noticed an error in the demographic data in this article. The validity of the findings and the conclusions of the paper is not affected. However, there is an error in the reported sample size and in the means and standard deviations of the subjects’ ages and MMSE scores. We would like to correct this error, which came to light when we were re-analyzing the data for a meta-analysis. The error occurred because an older version of a spreadsheet was incorrectly used when reporting the sample composition. Instead of examining 12 Alzheimer's disease patients and 14 healthy elderly controls, we in fact examined 17 Alzheimer’s disease patients and 14 healthy elderly controls. All maps and morphometric data reported in the paper are correct, except that the sample size was in fact slightly higher than that originally reported, and the maps computed in the paper were based on the larger sample (which included five more subjects in the Alzheimer’s disease group). All of the maps and figures in the paper are correct, and the conclusions of the paper are unchanged. We apologize for this error, which falls under the sole responsibility of the first author. The corrected demographic information appears below.
Resumo:
Population-based brain mapping provides great insight into the trajectory of aging and dementia, as well as brain changes that normally occur over the human life span.We describe three novel brain mapping techniques, cortical thickness mapping, tensor-based morphometry (TBM), and hippocampal surface modeling, which offer enormous power for measuring disease progression in drug trials, and shed light on the neuroscience of brain degeneration in Alzheimer's disease (AD) and mild cognitive impairment (MCI).We report the first time-lapse maps of cortical atrophy spreading dynamically in the living brain, based on averaging data from populations of subjects with Alzheimer's disease and normal subjects imaged longitudinally with MRI. These dynamic sequences show a rapidly advancing wave of cortical atrophy sweeping from limbic and temporal cortices into higher-order association and ultimately primary sensorimotor areas, in a pattern that correlates with cognitive decline. A complementary technique, TBM, reveals the 3D profile of atrophic rates, at each point in the brain. A third technique, hippocampal surface modeling, plots the profile of shape alterations across the hippocampal surface. The three techniques provide moderate to highly automated analyses of images, have been validated on hundreds of scans, and are sensitive to clinically relevant changes in individual patients and groups undergoing different drug treatments. We compare time-lapse maps of AD, MCI, and other dementias, correlate these changes with cognition, and relate them to similar time-lapse maps of childhood development, schizophrenia, and HIV-associated brain degeneration. Strengths and weaknesses of these different imaging measures for basic neuroscience and drug trials are discussed.
Resumo:
This paper describes algorithms that can identify patterns of brain structure and function associated with Alzheimer's disease, schizophrenia, normal aging, and abnormal brain development based on imaging data collected in large human populations. Extraordinary information can be discovered with these techniques: dynamic brain maps reveal how the brain grows in childhood, how it changes in disease, and how it responds to medication. Genetic brain maps can reveal genetic influences on brain structure, shedding light on the nature-nurture debate, and the mechanisms underlying inherited neurobehavioral disorders. Recently, we created time-lapse movies of brain structure for a variety of diseases. These identify complex, shifting patterns of brain structural deficits, revealing where, and at what rate, the path of brain deterioration in illness deviates from normal. Statistical criteria can then identify situations in which these changes are abnormally accelerated, or when medication or other interventions slow them. In this paper, we focus on describing our approaches to map structural changes in the cortex. These methods have already been used to reveal the profile of brain anomalies in studies of dementia, epilepsy, depression, childhood- and adult-onset schizophrenia, bipolar disorder, attention-deficit/hyperactivity disorder, fetal alcohol syndrome, Tourette syndrome, Williams syndrome, and in methamphetamine abusers. Specifically, we describe an image analysis pipeline known as cortical pattern matching that helps compare and pool cortical data over time and across subjects. Statistics are then defined to identify brain structural differences between groups, including localized alterations in cortical thickness, gray matter density (GMD), and asymmetries in cortical organization. Subtle features, not seen in individual brain scans, often emerge when population-based brain data are averaged in this way. Illustrative examples are presented to show the profound effects of development and various diseases on the human cortex. Dynamically spreading waves of gray matter loss are tracked in dementia and schizophrenia, and these sequences are related to normally occurring changes in healthy subjects of various ages.
Resumo:
We present global and regional rates of brain atrophy measured on serially acquired Tl-weighted brain MR images for a group of Alzheimer's disease (AD) patients and age-matched normal control (NC) subjects using the analysis procedure described in Part I. Three rates of brain atrophy: the rate of atrophy in the cerebrum, the rate of lateral ventricular enlargement and the rate of atrophy in the region of temporal lobes, were evaluated for 14 AD patients and 14 age-matched NC subjects. All three rates showed significant differences between the two groups. However, the greatest separation of the two groups was obtained when the regional rates were combined. This application has demonstrated that rates of brain atrophy, especially in specific regions of the brain, based on MR images can provide sensitive measures for evaluating the progression of AD. These measures will be useful for the evaluation of therapeutic effects of novel therapies for AD.
Resumo:
To classify each stage for a progressing disease such as Alzheimer’s disease is a key issue for the disease prevention and treatment. In this study, we derived structural brain networks from diffusion-weighted MRI using whole-brain tractography since there is growing interest in relating connectivity measures to clinical, cognitive, and genetic data. Relatively little work has usedmachine learning to make inferences about variations in brain networks in the progression of the Alzheimer’s disease. Here we developed a framework to utilize generalized low rank approximations of matrices (GLRAM) and modified linear discrimination analysis for unsupervised feature learning and classification of connectivity matrices. We apply the methods to brain networks derived from DWI scans of 41 people with Alzheimer’s disease, 73 people with EMCI, 38 people with LMCI, 47 elderly healthy controls and 221 young healthy controls. Our results show that this new framework can significantly improve classification accuracy when combining multiple datasets; this suggests the value of using data beyond the classification task at hand to model variations in brain connectivity.
Resumo:
Skin temperature is an important physiological measure that can reflect the presence of illness and injury as well as provide insight into the localised interactions between the body and the environment. The aim of this systematic review was to analyse the agreement between conductive and infrared means of assessing skin temperature which are commonly employed in in clinical, occupational, sports medicine, public health and research settings. Full-text eligibility was determined independently by two reviewers. Studies meeting the following criteria were included in the review: 1) the literature was written in English, 2) participants were human (in vivo), 3) skin surface temperature was assessed at the same site, 4) with at least two commercially available devices employed—one conductive and one infrared—and 5) had skin temperature data reported in the study. A computerised search of four electronic databases, using a combination of 21 keywords, and citation tracking was performed in January 2015. A total of 8,602 were returned. Methodology quality was assessed by 2 authors independently, using the Cochrane risk of bias tool. A total of 16 articles (n = 245) met the inclusion criteria. Devices are classified to be in agreement if they met the clinically meaningful recommendations of mean differences within ±0.5 °C and limits of agreement of ±1.0 °C. Twelve of the included studies found mean differences greater than ±0.5 °C between conductive and infrared devices. In the presence of external stimulus (e.g. exercise and/or heat) five studies foundexacerbated measurement differences between conductive and infrared devices. This is the first review that has attempted to investigate presence of any systemic bias between infrared and conductive measures by collectively evaluating the current evidence base. There was also a consistently high risk of bias across the studies, in terms of sample size, random sequence generation, allocation concealment, blinding and incomplete outcome data. This systematic review questions the suitability of using infrared cameras in stable, resting, laboratory conditions. Furthermore, both infrared cameras and thermometers in the presence of sweat and environmental heat demonstrate poor agreement when compared to conductive devices. These findings have implications for clinical, occupational, public health, sports science and research fields.
Resumo:
This project expands upon the discovery that scabies mites produce protein molecules that interfere with the human complement cascade, disrupting a critical component of the early stages of the host immune response. This is believed to provide an optimal environment for the development of commonly associated secondary bacterial infections. The thesis investigated the effect of two distinct scabies mite proteins, namely SMS B4 and SMIPP-S I1, on the in vitro proliferation of Group A Streptococcus in whole human blood. Additionally, in vitro immunoassays were performed to determine if complement mediated opsonisation and phagocytosis were also disrupted.
Resumo:
Review Objectives: This systematic review seeks to establish what best practice is for: Interventions which promote self-management for patients with End Stage Renal Disease (ERSD) undergoing Haemodialysis. Review questions: 1) Do education interventions improve self-management for patients with end stage renal disease? 2) Do psychosocial interventions such as Cognitive Behavioural Therapy, behavioural therapy or other counselling therapies and social support, improve self-management for patients with end stage renal disease? Criteria for considering studies for this review: Types of participants: This component of the review will consider studies with: • All adults over the age of 18 years • Patients with end stage renal disease • Undergoing haemodialysis Types of interventions/Phenomena of Interest: All studies evaluating the following interventions will be considered for inclusion in the review such as: Interventions which promote self management including: • Education interventions. • Psychosocial interventions such as cognitive behavioural therapy and other behavioural therapies, counselling and social support. Types of outcome measures/anticipated outcomes: This component of the review will consider studies that include the following outcomes: • Adherence with haemodialysis treatment, • Depression and/or anxiety, • Quality of life, • Carer burnout, • Social support • Patient satisfaction • Adverse events potentially attributable to the intervention or control treatment • Cost effectiveness of home haemodialysis Keywords chronic kidney failure; renal failure; end stage renal disease; chronic kidney disease
Resumo:
BACKGROUND After general surgery, the lower limb experiences some of the highest complication rates. However, little is known about contributing factors to surgical site failure in the lower limb dermatological surgery population. OBJECTIVE To determine the incidence of lower limb surgical site failure and to explore the predictors that contribute to surgical site failure. METHODS A prospective observational study design was used to collect data from 73 participants, from July 2010, to March 2012. Incidence was determined as a percentage of surgical site failure from the total population. Predictors were determined by the use of a binary logistic regression model. RESULTS The surgical site failure rate was 53.4%. Split-skin grafting had a higher failure rate than primary closures, 66% versus 26.1%. Predictors of lower limb surgical site failure were identified as increasing age (p = .04) and the presence of postoperative hematoma (p = .01), with all patients who developed surgical site infection experiencing surgical site failure (p = .01). CONCLUSION Findings from this study confirmed that the lower limb is at high risk of surgical site failure. Two predictors of surgical site failure from this cohort were determined. However, to understand this phenomenon and make recommendations to assist and reduce surgical site complications, further research in this field is required.
Resumo:
Objective There are many prediction equations available in the literature for the assessment of body composition from skinfold thickness (SFT). This study aims to cross validate some of those prediction equations to determine the suitability of their use on Sri Lankan children. Methods Height, weight and SFT of 5 different sites were measured. Total body water was assessed using the isotope dilution method (D2O). Percentage Fat mass (%FM) was estimated from SFT using prediction equations described by five authors in the literature. Results Five to 15 year old healthy, 282 Sri Lankan children were studied. The equation of Brook gave Ihe lowest bias but limits of agreement were high. Equations described by Deurenberg et al gave slightly higher bias but limits of agreement were narrowest and bias was not influence by extremes of body fat. Although prediction equations did not estimate %FM adequately, the association between %FM and SFT measures, were quite satisfactory. Conclusion We conclude that SFT can be used effectively in the assessment of body composition in children. However, for the assessment of body composition using SFT, either prediction equations should be derived to suit the local populations or existing equations should be cross-validated to determine the suitability before its application.