585 resultados para kinetic method
Resumo:
Structural damage detection using modal strain energy (MSE) is one of the most efficient and reliable structural health monitoring techniques. However, some of the existing MSE methods have been validated for special types of structures such as beams or steel truss bridges which demands improving the available methods. The purpose of this study is to improve an efficient modal strain energy method to detect and quantify the damage in complex structures at early stage of formation. In this paper, a modal strain energy method was mathematically developed and then numerically applied to a fixed-end beam and a three-story frame including single and multiple damage scenarios in absence and presence of up to five per cent noise. For each damage scenario, all mode shapes and natural frequencies of intact structures and the first five mode shapes of assumed damaged structures were obtained using STRAND7. The derived mode shapes of each intact and damaged structure at any damage scenario were then separately used in the improved formulation using MATLAB to detect the location and quantify the severity of damage as compared to those obtained from previous method. It was found that the improved method is more accurate, efficient and convergent than its predecessors. The outcomes of this study can be safely and inexpensively used for structural health monitoring to minimize the loss of lives and property by identifying the unforeseen structural damages.
Resumo:
The finite element method in principle adaptively divides the continuous domain with complex geometry into discrete simple subdomain by using an approximate element function, and the continuous element loads are also converted into the nodal load by means of the traditional lumping and consistent load methods, which can standardise a plethora of element loads into a typical numerical procedure, but element load effect is restricted to the nodal solution. It in turn means the accurate continuous element solutions with the element load effects are merely restricted to element nodes discretely, and further limited to either displacement or force field depending on which type of approximate function is derived. On the other hand, the analytical stability functions can give the accurate continuous element solutions due to element loads. Unfortunately, the expressions of stability functions are very diverse and distinct when subjected to different element loads that deter the numerical routine for practical applications. To this end, this paper presents a displacement-based finite element function (generalised element load method) with a plethora of element load effects in the similar fashion that never be achieved by the stability function, as well as it can generate the continuous first- and second-order elastic displacement and force solutions along an element without loss of accuracy considerably as the analytical approach that never be achieved by neither the lumping nor consistent load methods. Hence, the salient and unique features of this paper (generalised element load method) embody its robustness, versatility and accuracy in continuous element solutions when subjected to the great diversity of transverse element loads.
Resumo:
In this paper, my aim is to address the twin concerns raised in this session - models of practice and geographies or spaces of practice - through regarding a selection of works and processes that have arisen from my recent research. Setting up this discussion, I first present a short critique of the idea of models of creative practice, recognising possible problems with the attempt to generalise or abstract its complexities. Working through a series of portraits of my working environment, I will draw from Lefebvre’s Rhythmanalysis as a way of understanding an art practice both spatially and temporally, suggesting that changes and adjustments can occur through attending to both intuitions and observations of the complex of rhythmic layers constantly at play in any event. Reflecting on my recent studio practice I explore these rhythms through the evocation of a twin axis: the horizontal and the vertical and the arcs of difference or change that occur between them, in both spatial and temporal senses. What this analysis suggests is the idea that understanding does not only emerge from the construction of general principles, derived from observation of the particular, but that the study of rhythms allows us to maintain the primacy of the particular. This makes it well suited to a study of creative methods and objects, since it is to the encounter with and expression of the particular that art practices, most certainly my own, are frequently directed.
Resumo:
Structural Health Monitoring (SHM) schemes are useful for proper management of the performance of structures and for preventing their catastrophic failures. Vibration based SHM schemes has gained popularity during the past two decades resulting in significant research. It is hence evitable that future SHM schemes will include robust and automated vibration based damage assessment techniques (VBDAT) to detect, localize and quantify damage. In this context, the Damage Index (DI) method which is classified as non-model or output based VBDAT, has the ability to automate the damage assessment process without using a computer or numerical model along with actual measurements. Although damage assessment using DI methods have been able to achieve reasonable success for structures made of homogeneous materials such as steel, the same success level has not been reported with respect to Reinforced Concrete (RC) structures. The complexity of flexural cracks is claimed to be the main reason to hinder the applicability of existing DI methods in RC structures. Past research also indicates that use of a constant baseline throughout the damage assessment process undermines the potential of the Modal Strain Energy based Damage Index (MSEDI). To address this situation, this paper presents a novel method that has been developed as part of a comprehensive research project carried out at Queensland University of Technology, Brisbane, Australia. This novel process, referred to as the baseline updating method, continuously updates the baseline and systematically tracks both crack formation and propagation with the ability to automate the damage assessment process using output only data. The proposed method is illustrated through examples and the results demonstrate the capability of the method to achieve the desired outcomes.
Resumo:
Purpose – In structural, earthquake and aeronautical engineering and mechanical vibration, the solution of dynamic equations for a structure subjected to dynamic loading leads to a high order system of differential equations. The numerical methods are usually used for integration when either there is dealing with discrete data or there is no analytical solution for the equations. Since the numerical methods with more accuracy and stability give more accurate results in structural responses, there is a need to improve the existing methods or develop new ones. The paper aims to discuss these issues. Design/methodology/approach – In this paper, a new time integration method is proposed mathematically and numerically, which is accordingly applied to single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) systems. Finally, the results are compared to the existing methods such as Newmark’s method and closed form solution. Findings – It is concluded that, in the proposed method, the data variance of each set of structural responses such as displacement, velocity, or acceleration in different time steps is less than those in Newmark’s method, and the proposed method is more accurate and stable than Newmark’s method and is capable of analyzing the structure at fewer numbers of iteration or computation cycles, hence less time-consuming. Originality/value – A new mathematical and numerical time integration method is proposed for the computation of structural responses with higher accuracy and stability, lower data variance, and fewer numbers of iterations for computational cycles.
Resumo:
The desire to solve problems caused by socket prostheses in transfemoral amputees and the acquired success of osseointegration in the dental application has led to the introduction of osseointegration in the orthopedic surgery. Since its first introduction in 1990 in Gothenburg Sweden the osseointegrated (OI) orthopedic fixation has proven several benefits[1]. The surgery consists of two surgical procedures followed by a lengthy rehabilitation program. The rehabilitation program after an OI implant includes a specific training period with a short training prosthesis. Since mechanical loading is considered to be one of the key factors that influence bone mass and the osseointegration of bone-anchored implants, the rehabilitation program will also need to include some form of load bearing exercises (LBE). To date there are two frequently used commercially available human implants. We can find proof in the literature that load bearing exercises are performed by patients with both types of OI implants. We refer to two articles, a first one written by Dr. Aschoff and all and published in 2010 in the Journal of Bone and Joint Surgery.[2] The second one presented by Hagberg et al in 2009 gives a very thorough description of the rehabilitation program of TFA fitted with an OPRA implant. The progression of the load however is determined individually according to the residual skeleton’s quality, pain level and body weight of the participant.[1] Patients are using a classical bathroom weighing scale to control the load on the implant during the course of their rehabilitation. The bathroom scale is an affordable and easy-to-use device but it has some important shortcomings. The scale provides instantaneous feedback to the patient only on the magnitude of the vertical component of the applied force. The forces and moments applied along and around the three axes of the implant are unknown. Although there are different ways to assess the load on the implant for instance through inverse dynamics in a motion analysis laboratory [3-6] this assessment is challenging. A recent proof- of-concept study by Frossard et al (2009) showed that the shortcomings of the weighing scale can be overcome by a portable kinetic system based on a commercial transducer[7].
Resumo:
This study aimed at presenting the intra-tester reliability of the static load bearing exercises (LBEs) performed by individuals with transfemoral amputation (TFA) fitted with an osseointegrated implant to stimulate the bone remodelling process. There is a need for a better understanding of the implementation of these exercises particularly the reliability. The intra-tester reliability is discussed with a particular emphasis on inter-load prescribed, inter-axis and inter-component reliabilities as well as the effect of body weight normalisation. Eleven unilateral TFAs fitted with an OPRA implant performed five trials in four loading conditions. The forces and moments on the three axes of the implant were measured directly with an instrumented pylon including a six-channel transducer. Reliability of loading variables was assessed using intraclass correlation coefficients (ICCs) and percentage standard error of measurement values (%SEMs). The ICCs of all variables were above 0.9 and the %SEM values ranged between 0 and 87%. This study showed a high between-participants’ variance highlighting the lack of loading consistency typical of symptomatic population as well as a high reliability between the loading sessions indicating a plausible correct repetition of the LBE by the participants. However, these outcomes must be understood within the framework of the proposed experimental protocol.
Resumo:
Underground transport tunnels are vulnerable to blast events. This paper develops and applies a fully coupled technique involving the Smooth Particle Hydrodynamics and Finite Element techniques to investigate the blast response of segmented bored tunnels. Findings indicate that several bolts failed in the longitudinal direction due to redistribution of blast loading to adjacent tunnel rings. The tunnel segments respond as arch mechanisms in the transverse direction and suffered damage mainly due to high bending stresses. The novel information from the present study will enable safer designs of buried tunnels and provide a benchmark reference for future developments in this area.
Resumo:
Silane grafted kaolinite (KGS) was prepared through grinding kaolinite and then grafting with 3-aminopropyltriethoxysilane. The influence of KGS on the curing kinetics of cycloaliphatic epoxy resin was studied by non-isothermal differential scanning calorimetry at different heating rates. The reaction activation energy (Ea) was determined based on the Flynn–Wall–Ozawa method. The results of dynamic differential scanning calorimetry (DSC) kinetic analysis show that the surface hydroxyl groups of clay decreases the Ea from 70.6 kJ mol− 1 to 62.8 kJ mol− 1 and accelerates the curing reaction of the epoxy resin. The silane grafting reactions consume the surface hydroxyl groups of kaolinite and lead to a decrease in the catalytic efficiency of KGS in the curing of epoxy resin.
Resumo:
For wind farm optimizations with lands belonging to different owners, the traditional penalty method is highly dependent on the type of wind farm land division. The application of the traditional method can be cumbersome if the divisions are complex. To overcome this disadvantage, a new method is proposed in this paper for the first time. Unlike the penalty method which requires the addition of penalizing term when evaluating the fitness function, it is achieved through repairing the infeasible solutions before fitness evaluation. To assess the effectiveness of the proposed method on the optimization of wind farm, the optimizing results of different methods are compared for three different types of wind farm division. Different wind scenarios are also incorporated during optimization which includes (i) constant wind speed and wind direction; (ii) various wind speed and wind direction, and; (iii) the more realisticWeibull distribution. Results show that the performance of the new method varies for different land plots in the tested cases. Nevertheless, it is found that optimum or at least close to optimum results can be obtained with sequential land plot study using the new method for all cases. It is concluded that satisfactory results can be achieved using the proposed method. In addition, it has the advantage of flexibility in managing the wind farm design, which not only frees users to define the penalty parameter but without limitations on the wind farm division.
Resumo:
The phase transition of single layer molybdenum disulphide (MoS2) from semi-conducting 2H to metallic 1T and then to 1T' phases, and the effect of the phase transition on hydrogen evolution reaction (HER) are investigated within this work by density functional theory. Experimentally, 2H-MoS2 has been widely used as an excellent electrode for HER and can get charged easily. Here we find that the negative charge has a significant impact on the structural phase transition in a MoS2 monolayer. The thermodynamic stability of 1T-MoS2 increases with the negative charge state, comparing with the 2H-MoS2 structure before phase transition and the kinetic energy barrier for a phase transition from 2H to 1T decreases from 1.59 eV to 0.27 eV when 4 e- are injected per MoS2 unit. Additionally, 1T phase is found to transform into the distorted structure (1T' phase) spontaneously. On their activity toward hydrogen evolution reaction, 1T'-MoS2 structure hydrogen coverage shows comparable hydrogen evolution reaction activity to the 2H-MoS2 structure. If the charge transfer kinetics is taken into account, the catalytic activity of 1T'-MoS2 is superior to that of 2H-MoS2. Our finding provides a possible novel method for phase transition of MoS2, and enriches understanding of the catalytic properties of MoS2 for HER.
Resumo:
Background Assessing hand injury is of great interest given the level of involvement of the hand with the environment. Knowing different assessment systems and their limitations generates new perspectives. The integration of digital systems (accelerometry and electromyography) as a tool to supplement functional assessment allows the clinician to know more about the motor component and its relation to movement. Therefore, the purpose of this study was the kinematic and electromyography analysis during functional hand movements. Method Ten subjects carried out six functional movements (terminal pinch, termino-lateral pinch, tripod pinch, power grip, extension grip and ball grip). Muscle activity (hand and forearm) was measured in real time using electromyograms, acquired with the Mega ME 6000, whilst acceleration was measured using the AcceleGlove. Results Electrical activity and acceleration variables were recorded simultaneously during the carrying out of the functional movements. The acceleration outcome variables were the modular vectors of each finger of the hand and the palm. In the electromyography, the main variables were normalized by the mean and by the maximum muscle activity of the thenar region, hypothenar, first interosseous dorsal, wrist flexors, carpal flexors and wrist extensors. Conclusions Knowing muscle behavior allows the clinician to take a more direct approach in the treatment. Based on the results, the tripod grip shows greater kinetic activity and the middle finger is the most relevant in this regard. Ball grip involves most muscle activity, with the thenar region playing a fundamental role in hand activity. Clinical relevance Relating muscle activation, movements, individual load and displacement offers the possibility to proceed with rehabilitation by individual component.
Resumo:
With the extensive use of rating systems in the web, and their significance in decision making process by users, the need for more accurate aggregation methods has emerged. The Naïve aggregation method, using the simple mean, is not adequate anymore in providing accurate reputation scores for items [6 ], hence, several researches where conducted in order to provide more accurate alternative aggregation methods. Most of the current reputation models do not consider the distribution of ratings across the different possible ratings values. In this paper, we propose a novel reputation model, which generates more accurate reputation scores for items by deploying the normal distribution over ratings. Experiments show promising results for our proposed model over state-of-the-art ones on sparse and dense datasets.
Resumo:
Not a lot is known about most mental illness. Its triggers can rarely be established and nor can its aetiological dynamics, so it is hardly surprising that the accepted treatments for most mental illnesses are really strategies to manage the most overt symptoms. But with such a dearth of knowledge, how can worthy decisions be made about psychiatric interventions, especially given time and budgetary restrictions? This paper introduces a method, extrapolated from Salutogenics; the psycho-social theory of health introduced by Antonovsky in 1987. This method takes a normative stance (that psychiatric health care is for the betterment of psychiatric patients), and applies it to any context where there is a dearth of workable knowledge. In lieu of guiding evidence, the method identifies reasonable alternatives on the fly, enabling rational decisions to be made quickly with limited resources.
Resumo:
This paper deals with a finite element modelling method for thin layer mortared masonry systems. In this method, the mortar layers including the interfaces are represented using a zero thickness interface element and the masonry units are modelled using an elasto-plastic, damaging solid element. The interface element is formulated using two regimes; i) shear-tension and ii) shearcompression. In the shear-tension regime, the failure of joint is consiedered through an eliptical failure criteria and in shear-compression it is considered through Mohr Coulomb type failure criterion. An explicit integration scheme is used in an implicit finite element framework for the formulation of the interface element. The model is calibrated with an experimental dataset from thin layer mortared masonry prism subjected to uniaxial compression, a triplet subjected to shear loads a beam subjected to flexural loads and used to predict the response of thin layer mortared masonry wallettes under orthotropic loading. The model is found to simulate the behaviour of a thin layer mortated masonry shear wall tested under pre-compression and inplane shear quite adequately. The model is shown to reproduce the failure of masonry panels under uniform biaxial state of stresses.