497 resultados para Intrauterine Growth Restriction (IUGR)
Resumo:
PURPOSE The purpose of this study was to examine the relationship between objectively measured ambient light exposure and longitudinal changes in axial eye growth in childhood. METHODS A total of 101 children (41 myopes and 60 nonmyopes), 10 to 15 years of age participated in this prospective longitudinal observational study. Axial eye growth was determined from measurements of ocular optical biometry collected at four study visits over an 18-month period. Each child’s mean daily light exposure was derived from two periods (each 14 days long) of objective light exposure measurements from a wrist-worn light sensor. RESULTS Over the 18-month study period, a modest but statistically significant association between greater average daily light exposure and slower axial eye growth was observed (P ¼ 0.047). Other significant predictors of axial eye growth in this population included children’s refractive error group (P < 0.001), sex (P < 0.01), and age (P < 0.001). Categorized according to their objectively measured average daily light exposure and adjusting for potential confounders (age, sex, baseline axial length, parental myopia, nearwork, and physical activity), children experiencing low average daily light exposure (mean daily light exposure: 459 6 117 lux, annual eye growth: 0.13 mm/y) exhibited significantly greater eye growth than children experiencing moderate (842 6 109 lux, 0.060 mm/y), and high (1455 6 317 lux, 0.065 mm/y) average daily light exposure levels (P ¼ 0.01). CONCLUSIONS In this population of children, greater daily light exposure was associated with less axial eye growth over an 18-month period. These findings support the role of light exposure in the documented association between time spent outdoors and childhood myopia.
Resumo:
PURPOSE To examine longitudinal changes in choroidal thickness and axial length in a population of children with a range of refractive errors. METHODS One hundred and one children (41 myopes and 60 nonmyopes) aged 10 to 15 years participated in this prospective, observational longitudinal study. For each child, 6-month measures of choroidal thickness (using enhanced depth imaging optical coherence tomography) and axial ocular biometry were collected four times over an 18-month period. Linear mixed-models were used to examine the longitudinal changes in choroidal thickness and the relationship between changes in choroidal thickness and axial eye growth over the study period. RESULTS A significant group mean increase in subfoveal choroidal thickness was observed over 18 months (mean increase 13 6 22 lm, P < 0.001). Myopic children exhibited significantly thinner choroids compared with nonmyopic children (P < 0.001), although there was no significant time by refractive group interaction (P ¼ 0.46), indicating similar changes in choroidal thickness over time in myopes and nonmyopes. However, a significant association between the change in choroidal thickness and the change in axial length over time was found (P < 0.001, β = −0.14). Children showing faster axial eye growth exhibited significantly less choroidal thickening over time compared with children showing slower axial eye growth. CONCLUSIONS A significant increase in choroidal thickness occurs over an 18-month period in normal 10- to 15-year-old children. Children undergoing faster axial eye growth exhibited less thickening and, in some cases, a thinning of the choroid. These findings support a potential role for the choroid in the mechanisms regulating eye growth in childhood.