584 resultados para Complex problems
Resumo:
Final report for the Australian Government Office for Learning and Teaching. "This seed project ‘Design thinking frameworks as transformative cross-disciplinary pedagogy’ aimed to examine the way design thinking strategies are used across disciplines to scaffold the development of student attributes in the domain of problem solving and creativity in order to enhance the nation’s capacity for innovation. Generic graduate attributes associated with innovation, creativity and problem solving are considered to be amongst the most important of all targeted attributes (Bradley Review of Higher Education, 2009). The project also aimed to gather data on how academics across disciplines conceptualised design thinking methodologies and strategies. Insights into how design thinking strategies could be embedded at the subject level to improve student outcomes were of particular interest in this regard. A related aim was the investigation of how design thinking strategies could be used by academics when designing new and innovative subjects and courses." Case Study 3: QUT Community Engaged Learning Lab Design Thinking/Design Led Innovation Workshop by Natalie Wright Context "The author, from the discipline area of Interior Design in the QUT School of Design, Faculty of Creative Industries, is a contributing academic and tutor for The Community Engaged Learning Lab, which was initiated at Queensland University of Technology in 2012. The Lab facilitates university-wide service-learning experiences and engages students, academics, and key community organisations in interdisciplinary action research projects to support student learning and to explore complex and ongoing problems nominated by the community partners. In Week 3, Semester One 2013, with the assistance of co-lead Dr Cara Wrigley, Senior Lecturer in Design led Innovation, a Masters of Architecture research student and nine participating industry-embedded Masters of Research (Design led Innovation) facilitators, a Design Thinking/Design led Innovation workshop was conducted for the Community Engaged Learning Lab students, and action research outcomes published at 2013 Tsinghua International Design Management Symposium, December 2013 in Shenzhen, China (Morehen, Wright, & Wrigley, 2013)."
Resumo:
This thesis introduces a method of applying Bayesian Networks to combine information from a range of data sources for effective decision support systems. It develops a set of techniques in development, validation, visualisation, and application of Complex Systems models, with a working demonstration in an Australian airport environment. The methods presented here have provided a modelling approach that produces highly flexible, informative and applicable interpretations of a system's behaviour under uncertain conditions. These end-to-end techniques are applied to the development of model based dashboards to support operators and decision makers in the multi-stakeholder airport environment. They provide highly flexible and informative interpretations and confidence in these interpretations of a system's behaviour under uncertain conditions.
Resumo:
The ultimate goal of profiling is to identify the major behavioral and personality characteristics to narrow the suspect pool. Inferences about offender characteristics can be accomplished deductively, based on the analysis of discrete offender behaviors established within a particular case. They can also be accomplished inductively, involving prediction based on abstract offender averages from group data (these methods and the logic on which they are based is detailed extensively in Chapters 2 and 4). As discussed, these two approaches are by no means equal.
Resumo:
It is commonly perceived that variables ‘measuring’ different dimensions of teaching (construed as instructional attributes) used in student evaluation of teaching (SET) questionnaires are so highly correlated that they pose a serious multicollinearity problem for quantitative analysis including regression analysis. Using nearly 12000 individual student responses to SET questionnaires and ten key dimensions of teaching and 25 courses at various undergraduate and postgraduate levels for multiple years at a large Australian university, this paper investigates whether this is indeed the case and if so under what circumstances. This paper tests this proposition first by examining variance inflation factors (VIFs), across courses, levels and over time using individual responses; and secondly by using class averages. In the first instance, the paper finds no sustainable evidence of multicollinearity. While, there were one or two isolated cases of VIFs marginally exceeding the conservative threshold of 5, in no cases did the VIFs for any of the instructional attributes come anywhere close to the high threshold value of 10. In the second instance, however, the paper finds that the attributes are highly correlated as all the VIFs exceed 10. These findings have two implications: (a) given the ordinal nature of the data ordered probit analysis using individual student responses can be employed to quantify the impact of instructional attributes on TEVAL score; (b) Data based on class averages cannot be used for probit analysis. An illustrative exercise using level 2 undergraduate courses data suggests higher TEVAL scores depend first and foremost on improving explanation, presentation, and organization of lecture materials.
Resumo:
Many nations are highlighting the need for a renaissance in the mathematical sciences as essential to the well-being of all citizens (e.g., Australian Academy of Science, 2006; 2010; The National Academies, 2009). Indeed, the first recommendation of The National Academies’ Rising Above the Storm (2007) was to vastly improve K–12 science and mathematics education. The subsequent report, Rising Above the Gathering Storm Two Years Later (2009), highlighted again the need to target mathematics and science from the earliest years of schooling: “It takes years or decades to build the capability to have a society that depends on science and technology . . . You need to generate the scientists and engineers, starting in elementary and middle school” (p. 9). Such pleas reflect the rapidly changing nature of problem solving and reasoning needed in today’s world, beyond the classroom. As The National Academies (2009) reported, “Today the problems are more complex than they were in the 1950s, and more global. They’ll require a new educated workforce, one that is more open, collaborative, and cross-disciplinary” (p. 19). The implications for the problem solving experiences we implement in schools are far-reaching. In this chapter, I consider problem solving and modelling in the primary school, beginning with the need to rethink the experiences we provide in the early years. I argue for a greater awareness of the learning potential of young children and the need to provide stimulating learning environments. I then focus on data modelling as a powerful means of advancing children’s statistical reasoning abilities, which they increasingly need as they navigate their data-drenched world.
Resumo:
An increasing amount of people seek health advice on the web using search engines; this poses challenging problems for current search technologies. In this paper we report an initial study of the effectiveness of current search engines in retrieving relevant information for diagnostic medical circumlocutory queries, i.e., queries that are issued by people seeking information about their health condition using a description of the symptoms they observes (e.g. hives all over body) rather than the medical term (e.g. urticaria). This type of queries frequently happens when people are unfamiliar with a domain or language and they are common among health information seekers attempting to self-diagnose or self-treat themselves. Our analysis reveals that current search engines are not equipped to effectively satisfy such information needs; this can have potential harmful outcomes on people’s health. Our results advocate for more research in developing information retrieval methods to support such complex information needs.
Resumo:
Australia’s governance of land and natural resources involves multiple polycentric domains of decision-making from global through to local levels. Although certainly complex, these arrangements have not necessarily translated into better decision-making or better environmental outcomes as evidenced by the growing concerns over the health and future of the Great Barrier Reef, (GBR). However within this system, arrangements for natural resource management (NRM) and reef water quality, which both use Australia’s integrated regional NRM model, have showed signs of improving decision-making and environmental outcomes in the GBR. In this paper we describe the latest evolutions in the governance and planning for natural resource use and management in Australia. We begin by reviewing the experience with first generation NRM as published in major audits and evaluations. As our primary interest is the health and future of the GBR, we then consider the impact of changes of second generation planning and governance outcomes in Queensland. We find that first generation plans, although developed under a relatively cohesive governance context, faced substantial problems in target setting, implementation, monitoring and review. Despite this, they were able to progress improvements in water quality in the Great Barrier Reef Regions. Second generation plans, currently being developed, face an even greater risk of failure due to the lack of bilateralism and cross-sectoral cooperation across the NRM governance system. The findings highlight the critical need to re-build and enhance the regional NRM model for NRM planning to have a positive impact on environmental outcomes in the GBR.
Resumo:
In this paper we present an update on our novel visualization technologies based on cellular immune interaction from both large-scale spatial and temporal perspectives. We do so with a primary motive: to present a visually and behaviourally realistic environment to the community of experimental biologists and physicians such that their knowledge and expertise may be more readily integrated into the model creation and calibration process. Visualization aids understanding as we rely on visual perception to make crucial decisions. For example, with our initial model, we can visualize the dynamics of an idealized lymphatic compartment, with antigen presenting cells (APC) and cytotoxic T lymphocyte (CTL) cells. The visualization technology presented here offers the researcher the ability to start, pause, zoom-in, zoom-out and navigate in 3-dimensions through an idealised lymphatic compartment.
Resumo:
Railways are an important mode of transportation. They are however large and complex and their construction, management and operation is time consuming and costly. Evidently planning the current and future activities is vital. Part of that planning process is an analysis of capacity. To determine what volume of traffic can be achieved over time, a variety of railway capacity analysis techniques have been created. A generic analytical approach that incorporates more complex train paths however has yet to be provided. This article provides such an approach. This article extends a mathematical model for determining the theoretical capacity of a railway network. The main contribution of this paper is the modelling of more complex train paths whereby each section can be visited many times in the course of a train’s journey. Three variant models are formulated and then demonstrated in a case study. This article’s numerical investigations have successively shown the applicability of the proposed models and how they may be used to gain insights into system performance.
Resumo:
In this paper, my aim is to address the twin concerns raised in this session - models of practice and geographies or spaces of practice - through regarding a selection of works and processes that have arisen from my recent research. Setting up this discussion, I first present a short critique of the idea of models of creative practice, recognising possible problems with the attempt to generalise or abstract its complexities. Working through a series of portraits of my working environment, I will draw from Lefebvre’s Rhythmanalysis as a way of understanding an art practice both spatially and temporally, suggesting that changes and adjustments can occur through attending to both intuitions and observations of the complex of rhythmic layers constantly at play in any event. Reflecting on my recent studio practice I explore these rhythms through the evocation of a twin axis: the horizontal and the vertical and the arcs of difference or change that occur between them, in both spatial and temporal senses. What this analysis suggests is the idea that understanding does not only emerge from the construction of general principles, derived from observation of the particular, but that the study of rhythms allows us to maintain the primacy of the particular. This makes it well suited to a study of creative methods and objects, since it is to the encounter with and expression of the particular that art practices, most certainly my own, are frequently directed.
Resumo:
There is an increasing need in biology and clinical medicine to robustly and reliably measure tens-to-hundreds of peptides and proteins in clinical and biological samples with high sensitivity, specificity, reproducibility and repeatability. Previously, we demonstrated that LC-MRM-MS with isotope dilution has suitable performance for quantitative measurements of small numbers of relatively abundant proteins in human plasma, and that the resulting assays can be transferred across laboratories while maintaining high reproducibility and quantitative precision. Here we significantly extend that earlier work, demonstrating that 11 laboratories using 14 LC-MS systems can develop, determine analytical figures of merit, and apply highly multiplexed MRM-MS assays targeting 125 peptides derived from 27 cancer-relevant proteins and 7 control proteins to precisely and reproducibly measure the analytes in human plasma. To ensure consistent generation of high quality data we incorporated a system suitability protocol (SSP) into our experimental design. The SSP enabled real-time monitoring of LC-MRM-MS performance during assay development and implementation, facilitating early detection and correction of chromatographic and instrumental problems. Low to sub-nanogram/mL sensitivity for proteins in plasma was achieved by one-step immunoaffinity depletion of 14 abundant plasma proteins prior to analysis. Median intra- and inter-laboratory reproducibility was <20%, sufficient for most biological studies and candidate protein biomarker verification. Digestion recovery of peptides was assessed and quantitative accuracy improved using heavy isotope labeled versions of the proteins as internal standards. Using the highly multiplexed assay, participating laboratories were able to precisely and reproducibly determine the levels of a series of analytes in blinded samples used to simulate an inter-laboratory clinical study of patient samples. Our study further establishes that LC-MRM-MS using stable isotope dilution, with appropriate attention to analytical validation and appropriate quality c`ontrol measures, enables sensitive, specific, reproducible and quantitative measurements of proteins and peptides in complex biological matrices such as plasma.
Resumo:
Utilities worldwide are focused on supplying peak electricity demand reliably and cost effectively, requiring a thorough understanding of all the factors influencing residential electricity use at peak times. An electricity demand reduction project based on comprehensive residential consumer engagement was established within an Australian community in 2008, and by 2011, peak demand had decreased to below pre-intervention levels. This paper applied field data discovered through qualitative in-depth interviews of 22 residential households at the community to a Bayesian Network complex system model to examine whether the system model could explain successful peak demand reduction in the case study location. The knowledge and understanding acquired through insights into the major influential factors and the potential impact of changes to these factors on peak demand would underpin demand reduction intervention strategies for a wider target group.
Resumo:
Extracellular polysaccharides are major immunogenic components of the bacterial cell envelope. However, little is known about their biosynthesis in the genus Acinetobacter, which includes A. baumannii, an important nosocomial pathogen. Whether Acinetobacter sp. produce a capsule or a lipopolysaccharide carrying an O antigen or both is not resolved. To explore these issues, genes involved in the synthesis of complex polysaccharides were located in 10 complete A. baumannii genome sequences, and the function of each of their products was predicted via comparison to enzymes with a known function. The absence of a gene encoding a WaaL ligase, required to link the carbohydrate polymer to the lipid A-core oligosaccharide (lipooligosaccharide) forming lipopolysaccharide, suggests that only a capsule is produced. Nine distinct arrangements of a large capsule biosynthesis locus, designated KL1 to KL9, were found in the genomes. Three forms of a second, smaller variable locus, likely to be required for synthesis of the outer core of the lipid A-core moiety, were designated OCL1 to OCL3 and also annotated. Each K locus includes genes for capsule export as well as genes for synthesis of activated sugar precursors, and for glycosyltransfer, glycan modification and oligosaccharide repeat-unit processing. The K loci all include the export genes at one end and genes for synthesis of common sugar precursors at the other, with a highly variable region that includes the remaining genes in between. Five different capsule loci, KL2, KL6, KL7, KL8 and KL9 were detected in multiply antibiotic resistant isolates belonging to global clone 2, and two other loci, KL1 and KL4, in global clone 1. This indicates that this region is being substituted repeatedly in multiply antibiotic resistant isolates from these clones.