781 resultados para Circadian timing system
Resumo:
Background Despite its efficacy and cost-effectiveness, exercise-based cardiac rehabilitation is undertaken by less than one-third of clinically eligible cardiac patients in every country for which data is available. Reasons for non-participation include the unavailability of hospital-based rehabilitation programs, or excessive travel time and distance. For this reason, there have been calls for the development of more flexible alternatives. Methodology and Principal Findings We developed a system to enable walking-based cardiac rehabilitation in which the patient's single-lead ECG, heart rate, GPS-based speed and location are transmitted by a programmed smartphone to a secure server for real-time monitoring by a qualified exercise scientist. The feasibility of this approach was evaluated in 134 remotely-monitored exercise assessment and exercise sessions in cardiac patients unable to undertake hospital-based rehabilitation. Completion rates, rates of technical problems, detection of ECG changes, pre- and post-intervention six minute walk test (6 MWT), cardiac depression and Quality of Life (QOL) were key measures. The system was rated as easy and quick to use. It allowed participants to complete six weeks of exercise-based rehabilitation near their homes, worksites, or when travelling. The majority of sessions were completed without any technical problems, although periodic signal loss in areas of poor coverage was an occasional limitation. Several exercise and post-exercise ECG changes were detected. Participants showed improvements comparable to those reported for hospital-based programs, walking significantly further on the post-intervention 6 MWT, 637 m (95% CI: 565–726), than on the pre-test, 524 m (95% CI: 420–655), and reporting significantly reduced levels of cardiac depression and significantly improved physical health-related QOL. Conclusions and Significance The system provided a feasible and very flexible alternative form of supervised cardiac rehabilitation for those unable to access hospital-based programs, with the potential to address a well-recognised deficiency in health care provision in many countries. Future research should assess its longer-term efficacy, cost-effectiveness and safety in larger samples representing the spectrum of cardiac morbidity and severity.
Resumo:
The somatosensory system plays an important role in balance control and age-related changes to this system have been implicated in falls. Parkinson’s disease (PD) is a chronic and progressive disease of the brain, characterized by postural instability and gait disturbance. Previous research has shown that deficiencies in somatosensory feedback may contribute to the poorer postural control demonstrated by PD individuals. However, few studies have comprehensively explored differences in somatosensory function and postural control between PD participants and healthy older individuals. The soles of the feet contain many cutaneous mechanoreceptors that provide important somatosensory information sources for postural control. Different types of insole devices have been developed to enhance this somatosensory information and improve postural stability, but these devices are often too complex and expensive to integrate into daily life. Textured insoles provide a more passive intervention that may be an inexpensive and accessible means to enhance the somatosensory input from the plantar surface of the feet. However, to date, there has been little work conducted to test the efficacy of enhanced somatosensory input induced by textured insoles in both healthy and PD populations during standing and walking. Therefore, the aims of this thesis were to determine: 1) whether textured insole surfaces can improve postural stability by enhancing somatosensory information in younger and older adults, 2) the differences between healthy older participants and PD participants for measures of physiological function and postural stability during standing and walking, 3) how changes in somatosensory information affect postural stability in both groups during standing and walking; and 4), whether textured insoles can improve postural stability in both groups during standing and walking. To address these aims, Study 1 recruited seven older individuals and ten healthy young controls to investigate the effects of two textured insole surfaces on postural stability while performing standing balance tests on a force plate. Participants were tested under three insole surface conditions: 1) barefoot; 2) standing on a hard textured insole surface; and 3), standing on a soft textured insole surface. Measurements derived from the centre of pressure displacement included the range of anterior-posterior and medial-lateral displacement, path length and the 90% confidence elliptical area (C90 area). Results of study 1 revealed a significant Group*Surface*Insole interaction for the four measures. Both textured insole surfaces reduced postural sway for the older group, especially in the eyes closed condition on the foam surface. However, participants reported that the soft textured insole surface was more comfortable and, hence, the soft textured insoles were adopted for Studies 2 and 3. For Study 2, 20 healthy older adults (controls) and 20 participants with Parkinson’s disease were recruited. Participants were evaluated using a series of physiological assessments that included touch sensitivity, vibratory perception, and pain and temperature threshold detection. Furthermore, nerve function and somatosensory evoked potentials tests were utilized to provide detailed information regarding peripheral nerve function for these participants. Standing balance and walking were assessed on different surfaces using a force plate and the 3D Vicon motion analysis system, respectively. Data derived from the force plate included the range of anterior-posterior and medial-lateral sway, while measures of stride length, stride period, cadence, double support time, stance phase, velocity and stride timing variability were reported for the walking assessment. The results of this study demonstrated that the PD group had decrements in somatosensory function compared to the healthy older control group. For electrodiagnosis, PD participants had poorer nerve function than controls, as evidenced by slower nerve conduction velocities and longer latencies in sural nerve and prolonged latency in the P37 somatosensory evoked potential. Furthermore, the PD group displayed more postural sway in both the anterior-posterior and medial-lateral directions relative to controls and these differences were increased when standing on a foam surface. With respect to the gait assessment, the PD group took shorter strides and had a reduced stride period compared with the control group. Furthermore, the PD group spent more time in the stance phase and had increased cadence and stride timing variability than the controls. Compared with walking on the firm surface, the two groups demonstrated different gait adaptations while walking on the uneven surface. Controls increased their stride length and stride period and decreased their cadence, which resulted in a consistent walking velocity on both surfaces. Conversely, while the PD patients also increased their stride period and decreased their cadence and stance period on the uneven surface, they did not increase their stride length and, hence walked slower on the uneven surface. In the PD group, there was a strong positive association between decreased somatosensory function and decreased clinical balance, as assessed by the Tinetti test. Poorer somatosensory function was also strongly positively correlated with the temporospatial gait parameters, especially shorter stride length. Study 3 evaluated the effects of manipulating the somatosensory information from the plantar surface of the feet using textured insoles in the same populations assessed in Study 2. For this study, participants performed the standing and walking balance tests under three footwear conditions: 1) barefoot; 2) with smooth insoles; and 3), with textured insoles. Standing balance and walking were evaluated using a force plate and a Vicon motion analysis system and the data were analysed in the same way outlined for Study 2. The findings showed that the smooth and textured insoles caused different effects on postural control during both the standing and walking trials. Both insoles decreased medial-lateral sway to the same level on the firm surface. The greatest benefits were observed in the PD group while wearing the textured insole. When standing under a more challenging condition on the foam surface with eyes closed, only the textured insole decreased medial-lateral sway in the PD group. With respect to the gait trials, both insoles increased walking velocity, stride length and stride time and decreased cadence, but these changes were more pronounced for the textured insoles. The effects of the textured insoles were evident under challenging conditions in the PD group and increased walking velocity and stride length, while decreasing cadence. Textured insoles were also effective in reducing the time spent in the double support and stance phases of the gait cycle and did not increase stride timing variability, as was the case for the smooth insoles for the PD group. The results of this study suggest that textured insoles, such as those evaluated in this research, may provide a low-cost means of improving postural stability in high-risk groups, such as people with PD, which may act as an important intervention to prevent falls.
Resumo:
The research team recognized the value of network-level Falling Weight Deflectometer (FWD) testing to evaluate the structural condition trends of flexible pavements. However, practical limitations due to the cost of testing, traffic control and safety concerns and the ability to test a large network may discourage some agencies from conducting the network-level FWD testing. For this reason, the surrogate measure of the Structural Condition Index (SCI) is suggested for use. The main purpose of the research presented in this paper is to investigate data mining strategies and to develop a prediction method of the structural condition trends for network-level applications which does not require FWD testing. The research team first evaluated the existing and historical pavement condition, distress, ride, traffic and other data attributes in the Texas Department of Transportation (TxDOT) Pavement Maintenance Information System (PMIS), applied data mining strategies to the data, discovered useful patterns and knowledge for SCI value prediction, and finally provided a reasonable measure of pavement structural condition which is correlated to the SCI. To evaluate the performance of the developed prediction approach, a case study was conducted using the SCI data calculated from the FWD data collected on flexible pavements over a 5-year period (2005 – 09) from 354 PMIS sections representing 37 pavement sections on the Texas highway system. The preliminary study results showed that the proposed approach can be used as a supportive pavement structural index in the event when FWD deflection data is not available and help pavement managers identify the timing and appropriate treatment level of preventive maintenance activities.
Resumo:
Maternal deaths have been a critical issue for women living in rural and remote areas. The need to travel long distances, the shortage of primary care providers such as physicians, specialists and nurses, and the closing of small hospitals have been problems identified in many rural areas. Some research work has been undertaken and a few techniques have been developed to remotely measure the physiological condition of pregnant women through sophisticated ultrasound equipment. There are numerous ways to reduce maternal deaths, and an important step is to select the right approaches to achieving this reduction. One such approach is the provision of decision support systems in rural and remote areas. Decision support systems (DSSs) have already shown a great potential in many health fields. This thesis proposes an ingenious decision support system (iDSS) based on the methodology of survey instruments and identification of significant variables to be used in iDSS using statistical analysis. A survey was undertaken with pregnant women and factorial experimental design was chosen to acquire sample size. Variables with good reliability in any one of the statistical techniques such as Chi-square, Cronbach’s á and Classification Tree were incorporated in the iDSS. The decision support system was developed with significant variables such as: Place of residence, Seeing the same doctor, Education, Tetanus injection, Baby weight, Previous baby born, Place of birth, Assisted delivery, Pregnancy parity, Doctor visits and Occupation. The ingenious decision support system was implemented with Visual Basic as front end and Microsoft SQL server management as backend. Outcomes of the ingenious decision support system include advice on Symptoms, Diet and Exercise to pregnant women. On conditional system was sent and validated by the gynaecologist. Another outcome of ingenious decision support system was to provide better pregnancy health awareness and reduce long distance travel, especially for women in rural areas. The proposed system has qualities such as usefulness, accuracy and accessibility.
Resumo:
There are an increasing number of compression systems available for treatment of venous leg ulcers and limited evidence on the relative effectiveness of these systems. The purpose of this study was to conduct a randomised controlled trial to compare the effectiveness of a 4-layer compression bandage system with Class 3 compression hosiery on healing and quality of life in patients with venous leg ulcers. Data were collected from 103 participants on demographics, health, ulcer status, treatments, pain, depression and quality of life for 24 weeks. After 24 weeks, 86% of the 4-layer bandage group and 77% of the hosiery group were healed (p=0.24). Median time to healing for the bandage group was 10 weeks, in comparison to 14 weeks for the hosiery group (p=0.018). Cox proportional hazards regression found participants in the 4-layer system were 2.1 times (95% CI 1.2–3.5) more likely to heal than those in hosiery, while longer ulcer duration, larger ulcer area and higher depression scores significantly delayed healing. No differences between groups were found in quality of life or pain measures. Findings indicate these systems were equally effective in healing patients by 24 weeks, however a 4-layer system may produce a more rapid response.