720 resultados para Business networks
Resumo:
Humans have altered environments and enhanced their well being unlike any other creature on the planet (Heilman & Donna, 2007); this is no different whether the environment is ecological, social or organisational. In recent times business modelling techniques have become intricately detailed in the pre-designing and evaluating of business flow before the final implementation (Ou-Yang & Lin, 2008). The importance of the organisation change and business process model is undeniable. The feedback received from real business process users is that the notation is easy to learn; the models do help people to understand the process better; the models can be used to improve the (business) process; and the notation is expressive enough to capture the essential information (Bennett, Doshi, Do Vale Junior, Kumar, Manikam, & Madavan, 2009).
Resumo:
“The process of innovation is often seen as being very linear, with research results, new technologies or user insights being channelled, often prematurely, into specific products and process” (Kyffin and Gardien 2009). It is precisely this perception of innovation-as-linear-process which this paper seeks to challenge. While there are many current theories and much contemporary literature available which discuss the management and catalysts of innovation, what is missing are examples of how innovation occurs from the application of these theories and literature (Wrigley & Bucolo 2010). This paper addresses both this gap and perceptions of the viability of linear innovation by presenting a case study for the commercialisation of a core technology (a cleantech, semi-portable mass-energy generator posited as a direct competitor to conventional energy provision systems), within an 18-month timeframe by the use of the Design-Led Innovation approach: “a process of creating a sustainable competitive advantage by radically changing the customer value proposition” (Bucolo & Matthews 2011).
Resumo:
In recent years, the value of business planning for new business ventures and small firms has been the subject of debate amongst entrepreneurship researchers (Brinckmann et al 2010: 24). Drawing on institutional theory, a number of writers suggest that business planning is primarily used to confer symbolic legitimacy on businesses seeking investment and engagement from external stakeholders ( Karlsson & Honig 2009; Zimmerman & Zeitz 2002; Delmar & Shane 2004). In this sense, business planning may not have any significant effects on firm learning, but may be used as evidence of good business operations in order to attract external resources. Meta-evaluation of the available empirical literature contests this proposition, finding that both the symbolic and organisational learning effects of business planning influence small firm performance (Brinckmann et al 2010: 36) While social enterprise – which we define as organisations that exist for a public or community benefit and trade to fulfill their mission - the study of social enterprise is a nascent and pre-paradigmatic area of inquiry (Nicholls 2010). As a consequence, there has been relatively little empirical analysis of the nature or effects of business planning amongst social enterprises (for two exceptions, see exploratory studies by Hynes 2009 and Bull & Crompton 2006). In this paper, we examine business planning practices amongst Australian social enterprises. Drawing on a survey of 365 social enterprises conducted in 2010 and in-depth interviews with 11 social entrepreneurs and managers from eight social enterprises, we find that social enterprises report being more actively engaged in business planning activities than their mainstream business counterparts. Our exploratory research suggests that both legitimacy and learning drive business planning amongst social enterprises, although legitimacy is the stronger driver. Our results also suggest that, as multi-stakeholder businesses led by mission, business planning can serve unique communicative and relational functions for this business type.
Resumo:
Providing effective IT support for business processes has become crucial for enterprises to stay competitive. In response to this need numerous process support paradigms (e.g., workflow management, service flow management, case handling), process specification standards (e.g., WS-BPEL, BPML, BPMN), process tools (e.g., ARIS Toolset, Tibco Staffware, FLOWer), and supporting methods have emerged in recent years. Summarized under the term “Business Process Management” (BPM), these paradigms, standards, tools, and methods have become a success-critical instrument for improving process performance.
Resumo:
Rule extraction from neural network algorithms have been investigated for two decades and there have been significant applications. Despite this level of success, rule extraction from neural network methods are generally not part of data mining tools, and a significant commercial breakthrough may still be some time away. This paper briefly reviews the state-of-the-art and points to some of the obstacles, namely a lack of evaluation techniques in experiments and larger benchmark data sets. A significant new development is the view that rule extraction from neural networks is an interactive process which actively involves the user. This leads to the application of assessment and evaluation techniques from information retrieval which may lead to a range of new methods.
Resumo:
Bioinformatics involves analyses of biological data such as DNA sequences, microarrays and protein-protein interaction (PPI) networks. Its two main objectives are the identification of genes or proteins and the prediction of their functions. Biological data often contain uncertain and imprecise information. Fuzzy theory provides useful tools to deal with this type of information, hence has played an important role in analyses of biological data. In this thesis, we aim to develop some new fuzzy techniques and apply them on DNA microarrays and PPI networks. We will focus on three problems: (1) clustering of microarrays; (2) identification of disease-associated genes in microarrays; and (3) identification of protein complexes in PPI networks. The first part of the thesis aims to detect, by the fuzzy C-means (FCM) method, clustering structures in DNA microarrays corrupted by noise. Because of the presence of noise, some clustering structures found in random data may not have any biological significance. In this part, we propose to combine the FCM with the empirical mode decomposition (EMD) for clustering microarray data. The purpose of EMD is to reduce, preferably to remove, the effect of noise, resulting in what is known as denoised data. We call this method the fuzzy C-means method with empirical mode decomposition (FCM-EMD). We applied this method on yeast and serum microarrays, and the silhouette values are used for assessment of the quality of clustering. The results indicate that the clustering structures of denoised data are more reasonable, implying that genes have tighter association with their clusters. Furthermore we found that the estimation of the fuzzy parameter m, which is a difficult step, can be avoided to some extent by analysing denoised microarray data. The second part aims to identify disease-associated genes from DNA microarray data which are generated under different conditions, e.g., patients and normal people. We developed a type-2 fuzzy membership (FM) function for identification of diseaseassociated genes. This approach is applied to diabetes and lung cancer data, and a comparison with the original FM test was carried out. Among the ten best-ranked genes of diabetes identified by the type-2 FM test, seven genes have been confirmed as diabetes-associated genes according to gene description information in Gene Bank and the published literature. An additional gene is further identified. Among the ten best-ranked genes identified in lung cancer data, seven are confirmed that they are associated with lung cancer or its treatment. The type-2 FM-d values are significantly different, which makes the identifications more convincing than the original FM test. The third part of the thesis aims to identify protein complexes in large interaction networks. Identification of protein complexes is crucial to understand the principles of cellular organisation and to predict protein functions. In this part, we proposed a novel method which combines the fuzzy clustering method and interaction probability to identify the overlapping and non-overlapping community structures in PPI networks, then to detect protein complexes in these sub-networks. Our method is based on both the fuzzy relation model and the graph model. We applied the method on several PPI networks and compared with a popular protein complex identification method, the clique percolation method. For the same data, we detected more protein complexes. We also applied our method on two social networks. The results showed our method works well for detecting sub-networks and give a reasonable understanding of these communities.
Resumo:
Complex networks have been studied extensively due to their relevance to many real-world systems such as the world-wide web, the internet, biological and social systems. During the past two decades, studies of such networks in different fields have produced many significant results concerning their structures, topological properties, and dynamics. Three well-known properties of complex networks are scale-free degree distribution, small-world effect and self-similarity. The search for additional meaningful properties and the relationships among these properties is an active area of current research. This thesis investigates a newer aspect of complex networks, namely their multifractality, which is an extension of the concept of selfsimilarity. The first part of the thesis aims to confirm that the study of properties of complex networks can be expanded to a wider field including more complex weighted networks. Those real networks that have been shown to possess the self-similarity property in the existing literature are all unweighted networks. We use the proteinprotein interaction (PPI) networks as a key example to show that their weighted networks inherit the self-similarity from the original unweighted networks. Firstly, we confirm that the random sequential box-covering algorithm is an effective tool to compute the fractal dimension of complex networks. This is demonstrated on the Homo sapiens and E. coli PPI networks as well as their skeletons. Our results verify that the fractal dimension of the skeleton is smaller than that of the original network due to the shortest distance between nodes is larger in the skeleton, hence for a fixed box-size more boxes will be needed to cover the skeleton. Then we adopt the iterative scoring method to generate weighted PPI networks of five species, namely Homo sapiens, E. coli, yeast, C. elegans and Arabidopsis Thaliana. By using the random sequential box-covering algorithm, we calculate the fractal dimensions for both the original unweighted PPI networks and the generated weighted networks. The results show that self-similarity is still present in generated weighted PPI networks. This implication will be useful for our treatment of the networks in the third part of the thesis. The second part of the thesis aims to explore the multifractal behavior of different complex networks. Fractals such as the Cantor set, the Koch curve and the Sierspinski gasket are homogeneous since these fractals consist of a geometrical figure which repeats on an ever-reduced scale. Fractal analysis is a useful method for their study. However, real-world fractals are not homogeneous; there is rarely an identical motif repeated on all scales. Their singularity may vary on different subsets; implying that these objects are multifractal. Multifractal analysis is a useful way to systematically characterize the spatial heterogeneity of both theoretical and experimental fractal patterns. However, the tools for multifractal analysis of objects in Euclidean space are not suitable for complex networks. In this thesis, we propose a new box covering algorithm for multifractal analysis of complex networks. This algorithm is demonstrated in the computation of the generalized fractal dimensions of some theoretical networks, namely scale-free networks, small-world networks, random networks, and a kind of real networks, namely PPI networks of different species. Our main finding is the existence of multifractality in scale-free networks and PPI networks, while the multifractal behaviour is not confirmed for small-world networks and random networks. As another application, we generate gene interactions networks for patients and healthy people using the correlation coefficients between microarrays of different genes. Our results confirm the existence of multifractality in gene interactions networks. This multifractal analysis then provides a potentially useful tool for gene clustering and identification. The third part of the thesis aims to investigate the topological properties of networks constructed from time series. Characterizing complicated dynamics from time series is a fundamental problem of continuing interest in a wide variety of fields. Recent works indicate that complex network theory can be a powerful tool to analyse time series. Many existing methods for transforming time series into complex networks share a common feature: they define the connectivity of a complex network by the mutual proximity of different parts (e.g., individual states, state vectors, or cycles) of a single trajectory. In this thesis, we propose a new method to construct networks of time series: we define nodes by vectors of a certain length in the time series, and weight of edges between any two nodes by the Euclidean distance between the corresponding two vectors. We apply this method to build networks for fractional Brownian motions, whose long-range dependence is characterised by their Hurst exponent. We verify the validity of this method by showing that time series with stronger correlation, hence larger Hurst exponent, tend to have smaller fractal dimension, hence smoother sample paths. We then construct networks via the technique of horizontal visibility graph (HVG), which has been widely used recently. We confirm a known linear relationship between the Hurst exponent of fractional Brownian motion and the fractal dimension of the corresponding HVG network. In the first application, we apply our newly developed box-covering algorithm to calculate the generalized fractal dimensions of the HVG networks of fractional Brownian motions as well as those for binomial cascades and five bacterial genomes. The results confirm the monoscaling of fractional Brownian motion and the multifractality of the rest. As an additional application, we discuss the resilience of networks constructed from time series via two different approaches: visibility graph and horizontal visibility graph. Our finding is that the degree distribution of VG networks of fractional Brownian motions is scale-free (i.e., having a power law) meaning that one needs to destroy a large percentage of nodes before the network collapses into isolated parts; while for HVG networks of fractional Brownian motions, the degree distribution has exponential tails, implying that HVG networks would not survive the same kind of attack.
Resumo:
Nowadays, business process management is an important approach for managing organizations from an operational perspective. As a consequence, it is common to see organizations develop collections of hundreds or even thousands of business process models. Such large collections of process models bring new challenges and provide new opportunities, as the knowledge that they encapsulate requires to be properly managed. Therefore, a variety of techniques for managing large collections of business process models is being developed. The goal of this paper is to provide an overview of the management techniques that currently exist, as well as the open research challenges that they pose.
Resumo:
There is a continued need to consider ways to prevent early adolescent engagement in a variety of harmful risk-taking behaviours for example, violence, road-related risks and alcohol use. The current prospective study examined adolescents’ reports of intervening to try and stop friends’ engagement in such behaviours among 207 early adolescents (mean age = 13.51 years, 50.1% females). Findings showed that intervening behaviour after three months was predicted by the confidence to intervene which in turn was predicted by student and teacher support although not parental support. The findings suggest that the benefits of positive relationship experiences might extend to the safety of early adolescent friendship groups particularly through the development of confidence to try and stop friends’ risky and dangerous behaviours. Findings from the study support the important role of the school in creating a culture of positive adolescent behaviour whereby young people take social responsibility.
Resumo:
Key establishment is a crucial cryptographic primitive for building secure communication channels between two parties in a network. It has been studied extensively in theory and widely deployed in practice. In the research literature a typical protocol in the public-key setting aims for key secrecy and mutual authentication. However, there are many important practical scenarios where mutual authentication is undesirable, such as in anonymity networks like Tor, or is difficult to achieve due to insufficient public-key infrastructure at the user level, as is the case on the Internet today. In this work we are concerned with the scenario where two parties establish a private shared session key, but only one party authenticates to the other; in fact, the unauthenticated party may wish to have strong anonymity guarantees. We present a desirable set of security, authentication, and anonymity goals for this setting and develop a model which captures these properties. Our approach allows for clients to choose among different levels of authentication. We also describe an attack on a previous protocol of Øverlier and Syverson, and present a new, efficient key exchange protocol that provides one-way authentication and anonymity.
Resumo:
Google, Facebook, Twitter, LinkedIn, etc. are some of the prominent large-scale digital service providers that are having tremendous impact on societies, corporations and individuals. However, despite the rapid uptake and their obvious influence on the behavior of individuals and the business models and networks of organizations, we still lack a deeper, theory-guided understanding of the related phenomenon. We use Teece’s notion of complementary assets and extend it towards ‘digital complementary assets’ (DCA) in an attempt to provide such a theory-guided understanding of these digital services. Building on Teece’s theory, we make three contributions. First, we offer a new conceptualization of digital complementary assets in the form of digital public goods and digital public assets. Second, we differentiate three models for how organizations can engage with such digital complementary assets. Third, user-base is found to be a critical factor when considering appropriability.
Resumo:
Participation in networks, both as a concept and process, is widely supported in environmental education as a democratic and equitable pathway to individual and social change for sustainability. However, the processes of participation in networks are rarely problematized. Rather, it is assumed that we inherently know how to participate in networks. This assumption means that participation is seldom questioned. Underlying support for participation in networks is a belief that it allows individuals to connect in new and meaningful ways, that individuals can engage in making decisions and in bringing about change in arenas that affect them, and that they will be engaging in new, non-hierarchical and equitable relationships. In this paper we problematize participation in networks. As an example we use research into a decentralized network – described as such in its own literature - the Queensland Environmentally Sustainable Schools Initiative Alliance in Australia – to argue that while network participants were engaged and committed to participation in this network, 'old' forms of top-down engagement and relationships needed to be unlearnt. This paper thus proposes that for participation in decentralized networks to be meaningful, new learning about how to participate needs to occur.
Resumo:
Purpose: Leadership styles are reviewed and reassessed given recent research that links destructive leadership behaviours exhibited by unscrupulous executives with traits commonly identified as indicators of corporate psychopathy. Method/approach: A review of the literature describing the various theories dealing with the nature of leadership styles and the rise of interest in corporate psychopathy and destructive leadership. Implications: This paper offers a psychological perspective for future research which provides both impetus and additional support for further analysis and exploration of such leadership styles in the business environment. One distinct advantage of this extrapolation is the articulation of insights into aspects of decision making by leaders, providing further insight into the formulation of leadership development programs in organisations and courses in business schools training future leaders.
Resumo:
Director independence is a cornerstone of fiduciary responsibility and good corporate governance. However, most directors are recruited because of the roles and networks they hold, meaning that there is an expectation that identities held by a director outside the boardroom will be used to benefit the company. While this often works well, it is acknowledged that many directors, either consciously or subconsciously, will at times allow themselves to be influenced by their other roles to the detriment of the governance process. In this paper we argue that identity theory can be used to explore the impact of ‘identity’ on corporate governance and that practical tools can be developed to actively assist directors to maintain ‘independence’ in the boardroom.
Resumo:
Information Technology (IT) is an important resource that can facilitate growth and development in both the developed and developing economies. The forces of globalisation increase the digital divide between the developed and developing economies is increasing. The least developed economies (LDEs) are the most vulnerable within this environment. Intense competition for IT resources means that LDEs need a deeper understanding of how to source and evaluate their IT-related efforts. This effort puts LDEs in a better position to source funding from various stakeholders and promote localized investment in IT. This study presents a complementary approach to securing better IT-related business value in organizations in the LDEs. It further evaluates how IT and the complementaries need to managed within the LDEs. Analysis of data collected from five LDEs show that organizations that invest in IT and related complementaries are able to better their business processes. The data also suggest that improved business processes lead to overall business processes improvements. The above is only possible if organizations adopt IT and make related changes in the complementary resources within the established culture and localizing the required changes.