511 resultados para Bone breaking strength


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein phosphorylation regulates a wide variety of cellular processes. Thus, we hypothesize that single-nucleotide polymorphisms (SNPs) that may modulate protein phosphorylation could affect osteoporosis risk. Based on a previous conventional genome-wide association (GWA) study, we conducted a three-stage meta-analysis targeting phosphorylation-related SNPs (phosSNPs) for femoral neck (FN)-bone mineral density (BMD), total hip (HIP)-BMD, and lumbar spine (LS)-BMD phenotypes. In stage 1, 9593 phosSNPs were meta-analyzed in 11,140 individuals of various ancestries. Genome-wide significance (GWS) and suggestive significance were defined by α = 5.21 × 10–6 (0.05/9593) and 1.00 × 10–4, respectively. In stage 2, nine stage 1–discovered phosSNPs (based on α = 1.00 × 10–4) were in silico meta-analyzed in Dutch, Korean, and Australian cohorts. In stage 3, four phosSNPs that replicated in stage 2 (based on α = 5.56 × 10–3, 0.05/9) were de novo genotyped in two independent cohorts. IDUA rs3755955 and rs6831280, and WNT16 rs2707466 were associated with BMD phenotypes in each respective stage, and in three stages combined, achieving GWS for both FN-BMD (p = 8.36 × 10–10, p = 5.26 × 10–10, and p = 3.01 × 10–10, respectively) and HIP-BMD (p = 3.26 × 10–6, p = 1.97 × 10–6, and p = 1.63 × 10–12, respectively). Although in vitro studies demonstrated no differences in expressions of wild-type and mutant forms of IDUA and WNT16B proteins, in silico analyses predicts that WNT16 rs2707466 directly abolishes a phosphorylation site, which could cause a deleterious effect on WNT16 protein, and that IDUA phosSNPs rs3755955 and rs6831280 could exert indirect effects on nearby phosphorylation sites. Further studies will be required to determine the detailed and specific molecular effects of these BMD-associated non-synonymous variants. © 2015 American Society for Bone and Mineral Research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Western European house mouse, Mus musculus domesticus, is well-known for the high frequency of Robertsonian fusions that have rapidly produced more than 50 karyotipic races, making it an ideal model for studying the mechanisms of chromosomal speciation. The mouse mandible is one of the traits studied most intensively to investigate the effect of Robertsonian fusions on phenotypic variation within and between populations. This complex bone structure has also been widely used to study the level of integration between different morphogenetic units. Here, with the aim of testing the effect of different karyotypic assets on the morphology of the mouse mandible and on its level of modularity, we performed morphometric analyses of mice from a contact area between two highly metacentric races in Central Italy. We found no difference in size, while the mandible shape was found to be different between the two Robertsonian races, even after accounting for the genetic relationships among individuals and geographic proximity. Our results support the existence of two modules that indicate a certain degree of evolutionary independence, but no difference in the strength of modularity between chromosomal races. Moreover, the ascending ramus showed more pronounced interpopulation/race phenotypic differences than the alveolar region, an effect that could be associated to their different polygenic architecture. This study suggests that chromosomal rearrangements play a role in the house mouse phenotypic divergence, and that the two modules of the mouse mandible are differentially affected by environmental factors and genetic makeup.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LiteSteel beam (LSB) is a hollow flange channel made from cold-formed steel using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. LSBs are currently used as floor joists and bearers in buildings. However, there are no appropriate design standards available due to its unique hollow flange geometry, residual stress characteristics and initial geometric imperfections arising from manufacturing processes. Recent research studies have focused on investigating the structural behaviour of LSBs under pure bending, predominant shear and combined actions. However, web crippling behaviour and strengths of LSBs still need to be examined. Therefore, an experimental study was undertaken to investigate the web crippling behaviour and strengths of LSBs under EOF (End One Flange) and IOF (Interior One Flange) load cases. A total of 23 web crippling tests were performed and the results were compared with the current AS/NZS 4600 and AISI S100 design standards, which showed that the cold-formed steel design rules predicted the web crippling capacity of LSB sections very conservatively under EOF and IOF load cases. Therefore, suitably improved design equations were proposed to determine the web crippling capacity of LSBs based on experimental results. In addition, new design equations were also developed under the Direct Strength Method format. This paper presents the details of this experimental study on the web crippling behaviour and strengths of LiteSteel beams under EOF and IOF load cases and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: High bone mass (HBM), detected in 0.2% of dual-energy x-ray absorptiometry (DXA) scans, is characterized by raised body mass index, the basis for which is unclear. Objective: To investigate why body mass index is elevated in individuals with HBM, we characterized body composition and examined whether differences could be explained by bone phenotypes, eg, bone mass and/or bone turnover. Design, Setting, and Participants: We conducted a case-control study of 153 cases with unexplained HBM recruited from 4 UK centers by screening 219 088 DXA scans. Atotal of 138 first-degree relatives (of whom 51 had HBM) and 39 spouses were also recruited. Unaffected individuals served as controls. Main Outcome Measures: We measured fat mass, by DXA, and bone turnover markers. Results: Amongwomen, fat mass was inversely related to age in controls (P<.01), but not in HBM cases (P<.96) in whom mean fat mass was 8.9 [95% CI 4.7, 13.0] kg higher compared with controls (fully adjusted mean difference, P<.001). Increased fat mass in male HBM cases was less marked (gender interaction P = .03). Compared with controls, lean mass was also increased in female HBM cases (by 3.3 [1.2, 5.4] kg; P<.002); however, lean mass increases wereless marked than fat mass increases, resulting in 4.5% lower percentage lean mass in HBM cases (P<.001). Osteocalcin was also lower in female HBM cases compared with controls (by 2.8 [0.1, 5.5]μg/L; P = .04). Differences in fat mass were fully attenuated after hip bone mineral density (BMD) adjustment (P = .52) but unchanged after adjustment for bone turnover (P < .001), whereas the greater hip BMD in female HBM cases was minimally attenuated by fat mass adjustment (P<.001). Conclusions: HBM is characterized by a marked increase in fat mass in females, statistically explained by their greater BMD, but not by markers of bone turnover. Copyright © 2013 by The Endocrine Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CONTEXT: The role and importance of circulating sclerostin is poorly understood. High bone mass (HBM) caused by activating LRP5 mutations has been reported to be associated with increased plasma sclerostin concentrations; whether the same applies to HBM due to other causes is unknown. OBJECTIVE: Our objective was to determine circulating sclerostin concentrations in HBM. DESIGN AND PARTICIPANTS: In this case-control study, 406 HBM index cases were identified by screening dual-energy x-ray absorptiometry (DXA) databases from 4 United Kingdom centers (n = 219 088), excluding significant osteoarthritis/artifact. Controls comprised unaffected relatives and spouses. MAIN MEASURES: Plasma sclerostin; lumbar spine L1, total hip, and total body DXA; and radial and tibial peripheral quantitative computed tomography (subgroup only) were evaluated. RESULTS: Sclerostin concentrations were significantly higher in both LRP5 HBM and non-LRP5 HBM cases compared with controls: mean (SD) 130.1 (61.7) and 88.0 (39.3) vs 66.4 (32.3) pmol/L (both P < .001, which persisted after adjustment for a priori confounders). In combined adjusted analyses of cases and controls, sclerostin concentrations were positively related to all bone parameters found to be increased in HBM cases (ie, L1, total hip, and total body DXA bone mineral density and radial/tibial cortical area, cortical bone mineral density, and trabecular density). Although these relationships were broadly equivalent in HBM cases and controls, there was some evidence that associations between sclerostin and trabecular phenotypes were stronger in HBM cases, particularly for radial trabecular density (interaction P < .01). CONCLUSIONS: Circulating plasma sclerostin concentrations are increased in both LRP5 and non-LRP5 HBM compared with controls. In addition to the general positive relationship between sclerostin and DXA/peripheral quantitative computed tomography parameters, genetic factors predisposing to HBM may contribute to increased sclerostin levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) are critical post-transcriptional regulators. Based on a previous genome-wide association (GWA) scan, we conducted a polymorphism in microRNAs' Target Sites (poly-miRTS)-centric multistage meta-analysis for lumbar spine (LS)-, total hip (HIP)-, and femoral neck (FN)-bone mineral density (BMD). In stage I, 41,102 poly-miRTSs were meta-analyzed in 7 cohorts with a genome-wide significance (GWS) α=0.05/41,102=1.22×10-6. By applying α=5×10-5 (suggestive significance), 11 poly-miRTSs were selected, with FGFRL1 rs4647940 and PRR5 rs3213550 as top signals for FN-BMD (P-value=7.67×10-6 and 1.58×10-5) in gender-combined sample. In stage II in silico replication (two cohorts), FGFRL1 rs4647940 was the only signal marginally replicated for FN-BMD (P-value=5.08×10-3) at α=0.10/11=9.09×10-3. PRR5 rs3213550 was also selected based on biological significance. In stage III de novo genotyping replication (two cohorts), FGFRL1 rs4647940 was the only signal significantly replicated for FN-BMD (P-value=7.55×10-6) at α=0.05/2=0.025 in gender-combined sample. Aggregating three stages, FGFRL1 rs4647940 was the single stage I-discovered and stages II- and III-replicated signal attaining GWS for FN-BMD (P-value=8.87×10-12). Dual-luciferase reporter assays demonstrated that FGFRL1 3' untranslated region harboring rs4647940 appears to be hsa-miR-140-5p's target site. In a zebrafish microinjection experiment, dre-miR-140-5p is shown to exert a dramatic impact on craniofacial skeleton formation. Taken together, we provided functional evidence for a novel FGFRL1 poly-miRTS rs4647940 in a previously known 4p16.3 locus, and experimental and clinical genetics studies have shown both FGFRL1 and hsa-miR-140-5p are important for bone formation. © The Author 2015. Published by Oxford University Press. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aiming to identify novel genetic variants and to confirm previously identified genetic variants associated with bone mineral density (BMD), we conducted a three-stage genome-wide association (GWA) meta-analysis in 27 061 study subjects. Stage 1 meta-analyzed seven GWA samples and 11 140 subjects for BMDs at the lumbar spine, hip and femoral neck, followed by a Stage 2 in silico replication of 33 SNPs in 9258 subjects, and by a Stage 3 de novo validation of three SNPs in 6663 subjects. Combining evidence from all the stages, we have identified two novel loci that have not been reported previously at the genome-wide significance (GWS; 5.0 × 10-8) level: 14q24.2 (rs227425, P-value 3.98 × 10-13, SMOC1) in the combined sample of males and females and 21q22.13 (rs170183, P-value 4.15 × 10-9, CLDN14) in the female-specific sample. The two newly identified SNPs were also significant in the GEnetic Factors for OSteoporosis consortium (GEFOS, n 5 32 960) summary results. We have also independently confirmed 13 previously reported loci at the GWS level: 1p36.12 (ZBTB40), 1p31.3 (GPR177), 4p16.3 (FGFRL1), 4q22.1 (MEPE), 5q14.3 (MEF2C), 6q25.1 (C6orf97, ESR1), 7q21.3 (FLJ42280, SHFM1), 7q31.31 (FAM3C, WNT16), 8q24.12 (TNFRSF11B), 11p15.3 (SOX6), 11q13.4 (LRP5), 13q14.11 (AKAP11) and 16q24 (FOXL1). Gene expression analysis in osteogenic cells implied potential functional association of the two candidate genes (SMOC1 and CLDN14) in bone metabolism. Our findings independently confirm previously identified biological pathways underlying bone metabolism and contribute to the discovery of novel pathways, thus providing valuable insights into the intervention and treatment of osteoporosis. © The Author 2013. Published by Oxford University Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High bone mass (HBM) can be an incidental clinical finding; however, monogenic HBM disorders (eg, LRP5 or SOST mutations) are rare. We aimed to determine to what extent HBM is explained by mutations in known HBM genes. A total of 258 unrelated HBM cases were identified from a review of 335,115 DXA scans from 13 UK centers. Cases were assessed clinically and underwent sequencing of known anabolic HBM loci: LRP5 (exons 2, 3, 4), LRP4 (exons 25, 26), SOST (exons 1, 2, and the van Buchem's disease [VBD] 52-kb intronic deletion 3'). Family members were assessed for HBM segregation with identified variants. Three-dimensional protein models were constructed for identified variants. Two novel missense LRP5 HBM mutations ([c.518C>T; p.Thr173Met], [c.796C>T; p.Arg266Cys]) were identified, plus three previously reported missense LRP5 mutations ([c.593A>G; p.Asn198Ser], [c.724G>A; p.Ala242Thr], [c.266A>G; p.Gln89Arg]), associated with HBM in 11 adults from seven families. Individuals with LRP5 HBM ( approximately prevalence 5/100,000) displayed a variable phenotype of skeletal dysplasia with increased trabecular BMD and cortical thickness on HRpQCT, and gynoid fat mass accumulation on DXA, compared with both non-LRP5 HBM and controls. One mostly asymptomatic woman carried a novel heterozygous nonsense SOST mutation (c.530C>A; p.Ser177X) predicted to prematurely truncate sclerostin. Protein modeling suggests the severity of the LRP5-HBM phenotype corresponds to the degree of protein disruption and the consequent effect on SOST-LRP5 binding. We predict p.Asn198Ser and p.Ala242Thr directly disrupt SOST binding; both correspond to severe HBM phenotypes (BMD Z-scores +3.1 to +12.2, inability to float). Less disruptive structural alterations predicted from p.Arg266Cys, p.Thr173Met, and p.Gln89Arg were associated with less severe phenotypes (Z-scores +2.4 to +6.2, ability to float). In conclusion, although mutations in known HBM loci may be asymptomatic, they only account for a very small proportion ( approximately 3%) of HBM individuals, suggesting the great majority are explained by either unknown monogenic causes or polygenic inheritance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants, as well as rare, population-specific, coding variants. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD (rs11692564(T), MAF = 1.6%, replication effect size = +0.20 s.d., Pmeta = 2 x 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 x 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1(cre/flox) mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size = +0.41 s.d., Pmeta = 1 x 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Y2SiO5 has potential applications as functional-structural ceramic and environmental/thermal barrier coating material. As an important grain-boundary phase in the sintered Si3N4, it also influences the mechanical and dielectric performances of the host material. In this paper, we present the mechanical properties of Y2SiO5 including elastic moduli, hardness, strength and fracture toughness, and try to understand the mechanical features from the viewpoint of crystal structure. Y2SiO5 has low shear modulus, low hardness, as well as high capacity for dispersing mechanical damage energy and for resisting crack penetration. Particularly, it can be machined by cemented carbides tools. The crystal structure characteristics of Y2SiO5 suggest the low-energy weakly bonded atomic planes crossed only by the easily breaking Y-O bonds as well as the rotatable rigid SiO4 tetrahedra are the origins of low shear deformation, good damage tolerance and good machinability of this material. TEM observations also demonstrate that the mechanical damage energy was dispersed in the form of the micro-cleavages, stacking faults and twins along these weakly bonded atomic planes, which allows the "microscale-plasticity" for Y2SiO5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In castrate-resistant prostate cancer (CRPC), the prevailing organ for metastasis is bone, where the survival of cancer cells is regulated by the permissive metastatic niche offered by the bone marrow. The tumour microenvironment and cellular interactions with the matrix and bone cells enable metastasis and lead to cancer cells becoming androgen resistant. Hence, 3D models that mimic CRPC in terms of an androgen deprivation state (ADS) are needed to identify the mechanisms for CPRC growth in bone and further develop therapeutic strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct bone marrow (BM) injection has been proposed as a strategy to bypass homing inefficiencies associated with intravenous (IV) hematopoietic stem cell (HSC) transplantation. Despite physical delivery into the BM cavity, many donor cells are rapidly redistributed by vascular perfusion, perhaps compromising efficacy. Anchoring donor cells to 3-dimensional (3D) multicellular spheroids, formed from mesenchymal stem/stromal cells (MSC) might improve direct BM transplantation. To test this hypothesis, relevant combinations of human umbilical cord blood-derived CD34(+) cells and BM-derived MSC were transplanted into NOD/SCID gamma (NSG) mice using either IV or intrafemoral (IF) routes. IF transplantation resulted in higher human CD45(+) and CD34(+) cell engraftment within injected femurs relative to distal femurs regardless of cell combination, but did not improve overall CD45(+) engraftment at 8 weeks. Analysis within individual mice revealed that despite engraftment reaching near saturation within the injected femur, engraftment at distal hematopoietic sites including peripheral blood, spleen and non-injected femur, could be poor. Our data suggest that the retention of human HSC within the BM following direct BM injection enhances local chimerism at the expense of systemic chimerism in this xenogeneic model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Social media platforms risk polarising public opinions by employing proprietary algorithms that produce filter bubbles and echo chambers. As a result, the ability of citizens and communities to engage in robust debate in the public sphere is diminished. In response, this paper highlights the capacity of urban interfaces, such as pervasive displays, to counteract this trend by exposing citizens to the socio-cultural diversity of the city. Engagement with different ideas, networks and communities is crucial to both innovation and the functioning of democracy. We discuss examples of urban interfaces designed to play a key role in fostering this engagement. Based on an analysis of works empirically-grounded in field observations and design research, we call for a theoretical framework that positions pervasive displays and other urban interfaces as civic media. We argue that when designed for more than wayfinding, advertisement or television broadcasts, urban screens as civic media can rectify some of the pitfalls of social media by allowing the polarised user to break out of their filter bubble and embrace the cultural diversity and richness of the city.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last few decades, geotextiles have progressively been incorporated into geotechnical applications, especially in the field of coastal engineering. Geotextile materials often act as separator and a filter layer between rocks laid above and subgrade beneath. This versatile material has gradually substituted traditional granular materials because of its ease of installation, consistent quality and labour costefficiency. However, geotextiles often suffer damage during installation due to high dynamic bulk loading of rock placement. This can degrade geotextiles' mechanical strength. The properties considered in this paper include the impact resistance and retained strength of geotextiles. In general, the greater the impact energy applied to geotextiles, the greater the potential for damage. Results highlight the inadequacy of using index derived values as an indicator to determine geotextile performance on site because test results shows that geotextiles (staple fibre (SF) and continuous filament (CF)) with better mechanical properties did not outperform lower mechanical strength materials. The toughest CF product with a CBR index value of 9696N shows inferior impact resistance compared to SF product with the least CBR strength (2719N) given the same impact energy of 9.02 kJ. Test results also indicated that the reduction of strength for CF materials were much greater (between 20 and 50%) compared to SF materials (between 0 and 5%) when subjected to the same impact energy of 4.52 kJ.