497 resultados para mohair growth


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ghrelin, a gut hormone originating from the post-translational cleavage of preproghrelin, is the endogenous ligand of growth hormone secretagogue receptor 1a (GHS-R1a). Within the growth hormone (GH) axis, the biological activity of ghrelin requires octanoylation by ghrelin-O-acyltransferase (GOAT), conferring selective binding to the GHS-R1a receptor via acylated ghrelin. Complete loss of preproghrelin-derived signalling (through deletion of the Ghrl gene) contributes to a decline in peak GH release; however, the selective contribution of endogenous acyl-ghrelin to pulsatile GH release remains to be established. We assessed the pulsatile release of GH in ad lib. fed male germline goat−/− mice, extending measures to include mRNA for key hypothalamic regulators of GH release, and peripheral factors that are modulated relative to GH release. The amount of GH released was reduced in young goat−/− mice compared to age-matched wild-type mice, whereas pulse frequency and irregularity increased. Altered GH release did not coincide with alterations in hypothalamic Ghrh, Srif, Npy or Ghsr mRNA expression, or pituitary GH content, suggesting that loss of Goat does not compromise canonical mechanisms that contribute to pituitary GH production and release. Although loss of Goat resulted in an irregular pattern of GH release (characterised by an increase in the number of GH pulses observed during extended secretory events), this did not contribute to a change in the expression of sexually dimorphic GH-dependent liver genes. Of interest, circulating levels of insulin-like growth factor (IGF)-1 were elevated in goat−/− mice. This rise in circulating levels of IGF-1 was correlated with an increase in GH pulse frequency, suggesting that sustained or increased IGF-1 release in goat−/− mice may occur in response to altered GH release patterning. Our observations demonstrate that germline loss of Goat alters GH release and patterning. Although the biological relevance of altered GH secretory patterning remains unclear, we propose that this may contribute to sustained IGF-1 release and growth in goat−/− mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The choice of ethanol (C2H5OH) as carbon source in the Chemical Vapor Deposition (CVD) of graphene on copper foils can be considered as an attractive alternative among the commonly used hydrocarbons, such as methane (CH4) [1]. Ethanol, a safe, low cost and easy handling liquid precursor, offers fast and efficient growth kinetics with the synthesis of fullyformed graphene films in just few seconds [2]. In previous studies of graphene growth from ethanol, various research groups explored temperature ranges lower than 1000 °C, usually reported for methane-assisted CVD. In particular, the 650–850 °C and 900 °C ranges were investigated, respectively for 5 and 30 min growth time [3, 4]. Recently, our group reported the growth of highly-crystalline, few-layer graphene by ethanol-CVD in hydrogen flow (1– 100 sccm) at high temperatures (1000–1070 °C) using growth times typical of CH4-assisted synthesis (10–30 min) [5]. Furthermore, a synthesis time between 20 and 60 s in the same conditions was explored too. In such fast growth we demonstrated that fully-formed graphene films can be grown by exposing copper foils to a low partial pressure of ethanol (up to 2 Pa) in just 20 s [6] and we proposed that the rapid growth is related to an increase of the Cu catalyst efficiency due weak oxidizing nature of ethanol. Thus, the employment of such liquid precursor, in small concentrations, together with a reduced time of growth and very low pressure leads to highly efficient graphene synthesis. By this way, the complete coverage of a copper catalyst surface with high spatial uniformity can be obtained in a considerably lower time than when using methane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oriented, single-crystalline, one-dimensional (1D) TiO2 nanostructures would be most desirable for providing fascinating properties and features, such as high electron mobility or quantum confinement effects, high specific surface area, and even high mechanical strength, but achieving these structures has been limited by the availability of synthetic techniques. In this study, a concept for precisely controlling the morphology of 1D TiO2 nanostructures by tuning the hydrolysis rate of titanium precursors is proposed. Based on this innovation, oriented 1D rutile TiO2 nanostructure arrays with continually adjustable morphologies, from nanorods (NRODs) to nanoribbons (NRIBs), and then nanowires (NWs), as well as the transient state morphologies, were successfully synthesized. The proposed method is a significant finding in terms of controlling the morphology of the 1D TiO2 nano-architectures, which leads to significant changes in their band structures. It is worth noting that the synthesized rutile NRIBs and NWs have a comparable bandgap and conduction band edge height to those of the anatase phase, which in turn enhances their photochemical activity. In photovoltaic performance tests, the photoanode constructed from the oriented NRIB arrays possesses not only a high surface area for sufficient dye loading and better light scattering in the visible light range than for the other morphologies, but also a wider bandgap and higher conduction band edge, with more than 200% improvement in power conversion efficiency in dye-sensitized solar cells (DSCs) compared with NROD morphology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kallikrein-related peptidase 4 (KLK4) is a protease with elevated production in prostate cancer versus benign tissue. KLK4 expression is associated with prostate cancer risk, and its activity favours tumour progression through increasing cell motility and growth. Importantly, over-production of KLK4 in prostate glandular cells precedes tumour formation, positioning the enzyme to play a role in early remodelling of the tumour microenvironment, a process essential for tumour growth. We sought to identify the proteins and downstream signalling pathways targeted by KLK4 activity, to define its role in tumour microenvironment remodelling and evaluate the efficacy of KLK4 inhibition as a cancer therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The drive to replace lead (Pb) from electronics has led to the replacement of tin (Sn) alloys as the terminal plating for electronic devices. However, the deposition of Sn based alloys as the component surface finish tends to induce Sn whisker that causes unintended electric shorts when the conductive whiskers grow across to the adjacent conductor. Internal stress is considered as the driving force that causes the growth of Sn whiskers. In this study, stress type of elevated temperature/ humidity exposure at 55C/85%RH with the storage for up to 24 months was conducted to define the acceleration factor in samples with deposition of immersion Sn plating and Sn solder dipping. The addition of Nickel (Ni) under-layer was also applied to examine the correlation to field conditions. The results showed that the whisker length increased in high humidity irrespective of the deposition methods. It was also shown that pure Sn solder dipping mitigated the whisker growth but does not completely prevent it when alloying Sn with 0.4%wtCu. Additionally, Ni under-layer was indicated to be more efficient in mitigating the growth of whisker by prolonging the incubation time for whisker formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interactions between tumour cells and extracellular matrix proteins of the tumour microenvironment play crucial roles in cancer progression. So far, however, there are only a few experimental platforms available that allow us to study these interactions systematically in a mechanically defined three-dimensional (3D) context. Here, we have studied the effect of integrin binding motifs found within common extracellular matrix (ECM) proteins on 3D breast (MCF-7) and prostate (PC-3, LNCaP) cancer cell cultures, and co-cultures with endothelial and mesenchymal stromal cells. For this purpose, matrix metalloproteinase-degradable biohybrid poly(ethylene) glycol-heparin hydrogels were decorated with the peptide motifs RGD, GFOGER (collagen I), or IKVAV (laminin-111). Over 14 days, cancer spheroids of 100-200µm formed. While the morphology of poorly invasive MCF-7 and LNCaP cells was not modulated by any of the peptide motifs, the aggressive PC-3 cells exhibited an invasive morphology when cultured in hydrogels comprising IKVAV and GFOGER motifs compared to RGD motifs or nonfunctionalised controls. PC-3 (but not MCF-7 and LNCaP) cell growth and endothelial cell infiltration were also significantly enhanced in IKVAV and GFOGER presenting gels. Taken together, we have established a 3D culture model that allows for dissecting the effect of biochemical cues on processes relevant to early cancer progression. These findings provide a basis for more mechanistic studies that may further advance our understanding of how ECM modulates cancer cell invasion and how to ultimately interfere with this process.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Metastatic spread to the brain is common in patients with non–small cell lung cancer (NSCLC), but these patients are generally excluded from prospective clinical trials. The studies, phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations (LUX-Lung 3) and a randomized, open-label, phase III study of BIBW 2992 versus chemotherapy as first-line treatment for patients with stage IIIB or IV adenocarcinoma of the lung harbouring an EGFR activating mutation (LUX-Lung 6) investigated first-line afatinib versus platinum-based chemotherapy in epidermal growth factor receptor gene (EGFR) mutation-positive patients with NSCLC and included patients with brain metastases; prespecified subgroup analyses are assessed in this article. Methods For both LUX-Lung 3 and LUX-Lung 6, prespecified subgroup analyses of progression-free survival (PFS), overall survival, and objective response rate were undertaken in patients with asymptomatic brain metastases at baseline (n = 35 and n = 46, respectively). Post hoc analyses of clinical outcomes was undertaken in the combined data set (n = 81). Results In both studies, there was a trend toward improved PFS with afatinib versus chemotherapy in patients with brain metastases (LUX-Lung 3: 11.1 versus 5.4 months, hazard ratio [HR] = 0.54, p = 0.1378; LUX-Lung 6: 8.2 versus 4.7 months, HR = 0.47, p = 0.1060). The magnitude of PFS improvement with afatinib was similar to that observed in patients without brain metastases. In combined analysis, PFS was significantly improved with afatinib versus with chemotherapy in patients with brain metastases (8.2 versus 5.4 months; HR, 0.50; p = 0.0297). Afatinib significantly improved the objective response rate versus chemotherapy in patients with brain metastases. Safety findings were consistent with previous reports. Conclusions These findings lend support to the clinical activity of afatinib in EGFR mutation–positive patients with NSCLC and asymptomatic brain metastases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibroblast growth factors (FGFs) regulate a plethora of biological functions, in both the embryonic and adult stages of development, binding their cognate receptors and thus activating a variety of downstream signalling pathways. Deregulation of the FGF/FGFR signalling axis, observed in multifarious tumor types including squamous non-small cell lung cancer, occurs through genomic FGFR alterations that drive ligand-independent receptor signalling or alterations that support ligand-dependent activation. Mutations are not restricted to the tyrosine kinase domain and aberrations appear to be tumor type dependent. As well as its complementarity and synergy with VEGF of particular interest is the interplay between FGFR and EGFR and the ability of these pathways to offer a compensatory signalling escape mechanism when either is inhibited. Hence there exists a rationale for a combinatorial approach to inhibition of these dysregulated pathways to reverse drug resistance. To date, several multi-target tyrosine kinase inhibitors as well as FGFR specific tyrosine kinase inhibitors (TKIs), monoclonal antibodies and FGF ligand traps have been developed. Promising preclinical data has resulted in several drugs entering clinical trials. This review explores aberrant FGFR and its potential as a therapeutic target in solid tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The insulin‑like growth factor 1 receptor (IGF1R) pathway plays an important role in the pathogenesis of non‑small cell lung cancer (NSCLC) and also provides a mechanism of resistance to targeted therapies. IGF1R is therefore an ideal therapeutic target and several inhibitors have entered clinical trials. However, thus far the response to these inhibitors has been poor, highlighting the importance of predictive biomarkers to identify patient cohorts who will benefit from these targeted agents. It is well‑documented that mutations and/or deletions in the epidermal growth factor receptor (EGFR) tyrosine kinase (TK) domain predict sensitivity of NSCLC patients to EGFR TK inhibitors. Single‑nucleotide polymorphisms (SNPs) in the IGF pathway have been associated with disease, including breast and prostate cancer. The aim of the present study was to elucidate whether the IGF1R TK domain harbours SNPs, somatic mutations or deletions in NSCLC patients and correlates the mutation status to patient clinicopathological data and prognosis. Initially 100 NSCLC patients were screened for mutations/deletions in the IGF1R TK domain (exons 16‑21) by sequencing analysis. Following the identification of SNP rs2229765, a further 98 NSCLC patients and 866 healthy disease‑free control patients were genotyped using an SNP assay. The synonymous SNP (rs2229765) was the only aberrant base change identified in the IGF1R TK domain of 100 NSCLC patients initially analysed. SNP rs2229765 was detected in exon 16 and was found to have no significant association between IGF1R expression and survival. The GA genotype was identified in 53.5 and 49.4% of NSCLC patients and control individuals, respectively. No significant difference was found in the genotype (P=0.5487) or allele (P=0.9082) frequencies between the case and control group. The present findings indicate that in contrast to the EGFR TK domain, the IGF1R TK domain is not frequently mutated in NSCLC patients. The synonymous SNP (rs2229765) had no significant association between IGF1R expression and survival in the cohort of NSCLC patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This series of research vignettes is aimed at sharing current and interesting research findings from our team of international entrepreneurship researchers. This vignette, written by Professor Hannes Zacher, Professor Michael M. Gielnik and Dr Antje Schmitt, reports findings on relationships between small business managers’ age, their focus on opportunities, and business growth (sales and number of employees) over five years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This series of research vignettes is aimed at sharing current and interesting research findings from our team of international Entrepreneurship researchers. This vignette, written by Dr Judy Matthews examines the effects of firm engagement with design innovation programs on entrepreneurial activities of small and medium enterprises.