664 resultados para irradiation non-uniformity
Resumo:
Nanocomposite dielectrics hold a promising future for the next generation of insulation materials because of their excellent physical, chemical, and dielectric properties. In the presented study, we investigate the use of plasma processing technology to further enhance the dielectric performance of epoxy resin/SiO2 nanocomposite materials. The SiO2 nanoparticles are treated with atmospheric-pressure non-equilibrium plasma prior to being added into the epoxy resin host. Fourier transform infrared spectroscopy (FTIR) results reveal the effects of the plasma process on the surface functional groups of the treated nanoparticles. Scanning electron microscopy (SEM) results show that the plasma treatment appreciably improves the dispersion uniformity of nanoparticles in the host polymer. With respect to insulation performance, the epoxy/plasma-treated SiO2 specimen shows a 29% longer endurance time than the epoxy/untreated SiO2 nanocomposite under electrical aging. The Weibull plots of the dielectric breakdown field intensity suggest that the breakdown strength of the nanocomposite with the plasma pre-treatment on the nanoparticles is improved by 23.3%.
Resumo:
Atmospheric-pressure plasma jets are commonly used in many fields from medicine to nanotechnology, yet the issue of scaling the discharges up to larger areas without compromising the plasma uniformity remains a major challenge. In this paper, we demonstrate a homogenous cold air plasmaglow with a large cross-section generated by a direct current power supply. There is no risk of glow-to-arc transitions, and the plasmaglow appears uniform regardless of the gap between the nozzle and the surface being processed. Detailed studies show that both the position of the quartz tube and the gas flow rate can be used to control the plasma properties. Further investigation indicates that the residual charges trapped on the inner surface of the quartz tube may be responsible for the generation of the air plasma plume with a large cross-section. The spatially resolved optical emission spectroscopy reveals that the air plasma plume is uniform as it propagates out of the nozzle. The remarkable improvement of the plasma uniformity is used to improve the bio-compatibility of a glass coverslip over a reasonably large area. This improvement is demonstrated by a much more uniform and effective attachment and proliferation of human embryonic kidney 293 (HEK 293) cells on the plasma-treated surface.
Resumo:
The advantages of using low-temperature plasma environments for postprocessing of dense nanotube arrays are shown by means of multiscale hybrid numerical simulations. By controlling plasma-extracted ion fluxes and varying the plasma and sheath parameters, one can selectively coat, dope, or functionalize different areas on nanotube surfaces. Conditions of uniform deposition of ion fluxes over the entire nanotube surfaces are obtained for different array densities. The plasma route enables a uniform processing of lateral nanotube surfaces in very dense (with a step-to-height ratio of 1:4) arrays, impossible via the neutral gas process wherein radical penetration into the internanotube gaps is poor. © 2006 American Institute of Physics.
Resumo:
Random blinking is a major problem on the way to successful applications of semiconducting nanocrystals in optoelectronics and photonics, which until recently had neither a practical solution nor a theoretical interpretation. An experimental breakthrough has recently been made by fabricating non-blinking Cd1-xZnxSe/ZnSe graded nanocrystals [Wang et al., Nature, 2009, 459, 686]. Here, we (1) report an unequivocal and detailed theoretical investigation to understand the properties (e.g., profile) of the potential-well and the distribution of Zn content with respect to the nanocrystal radius and (2) develop a strategy to find the relationship between the photoluminescence (PL) energy peaks and the potential-well due to Zn distribution in nanocrystals. It is demonstrated that the non-square-well potential can be varied in such a way that one can indeed control the PL intensity and the energy-level difference (PL energy peaks) accurately. This implies that one can either suppress the blinking altogether, or alternatively, manipulate the PL energy peaks and intensities systematically to achieve a controlled non-random intermittent luminescence. The approach developed here is based on the ionization energy approximation and as such is generic and can be applied to any non-free-electron nanocrystals.
Resumo:
Nanophase nc-Si/a-SiC films that contain Si quantum dots (QDs) embedded in an amorphous SiC matrix were deposited on single-crystal silicon substrates using inductively coupled plasma-assisted chemical vapor deposition from the reactive silane and methane precursor gases diluted with hydrogen at a substrate temperature of 200 °C. The effect of the hydrogen dilution ratio X (X is defined as the flow rate ratio of hydrogen-to-silane plus methane gases), ranging from 0 to 10.0, on the morphological, structural, and compositional properties of the deposited films, is extensively and systematically studied by scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Raman spectroscopy, Fourier-transform infrared absorption spectroscopy, and X-ray photoelectron spectroscopy. Effective nanophase segregation at a low hydrogen dilution ratio of 4.0 leads to the formation of highly uniform Si QDs embedded in the amorphous SiC matrix. It is also shown that with the increase of X, the crystallinity degree and the crystallite size increase while the carbon content and the growth rate decrease. The obtained experimental results are explained in terms of the effect of hydrogen dilution on the nucleation and growth processes of the Si QDs in the high-density plasmas. These results are highly relevant to the development of next-generation photovoltaic solar cells, light-emitting diodes, thin-film transistors, and other applications.
Resumo:
Luminescent ZnO nanoparticles have been synthesized on silicon and quartz substrates under extremely non-equilibrium conditions of energetic ion condensation during the post-focus phase in a dense plasma focus (DPF) device. Ar+, O+, Zn+ and ZnO+ ions are generated as a result of interaction of hot and dense argon plasma focus with the surfaces of ZnO pellets placed at the anode. It is found that the sizes, structural and photoluminescence (PL) properties of the ZnO nanoparticles appear to be quite different on Si(1 0 0) and quartz substrates. The results of x-ray diffractometry and atomic force microscopy show that the ZnO nanoparticles are crystalline and range in size from 5-7 nm on Si(1 0 0) substrates to 10-38 nm on quartz substrates. Room-temperature PL studies reveal strong peaks related to excitonic bands and defects for the ZnO nanoparticles deposited on Si (1 0 0), whereas the excitonic bands are not excited in the quartz substrate case. Raman studies indicate the presence of E2 (high) mode for ZnO nanoparticles deposited on Si(1 0 0).
Resumo:
Nanocrystalline silicon thin films were deposited on single-crystal silicon and glass substrates simultaneously by inductively coupled plasma-assisted chemical vapor deposition from the reactive silane reactant gas diluted with hydrogen at a substrate temperature of 200 °C. The effect of hydrogen dilution ratio X (X is defined as the flow rate ratio of hydrogen to silane gas), ranging from 1 to 20, on the structural and optical properties of the deposited films, is extensively investigated by Raman spectroscopy, X-ray diffraction, Fourier transform infrared absorption spectroscopy, UV/VIS spectroscopy, and scanning electron microscopy. Our experimental results reveal that, with the increase of the hydrogen dilution ratio X, the deposition rate Rd and hydrogen content CH are reduced while the crystalline fraction Fc, mean grain size δ and optical bandgap ETauc are increased. In comparison with other plasma enhanced chemical vapor deposition methods of nanocrystalline silicon films where a very high hydrogen dilution ratio X is routinely required (e.g. X > 16), we have achieved nanocrystalline silicon films at a very low hydrogen dilution ratio of 1, featuring a high deposition rate of 1.57 nm/s, a high crystalline fraction of 67.1%, a very low hydrogen content of 4.4 at.%, an optical bandgap of 1.89 eV, and an almost vertically aligned columnar structure with a mean grain size of approximately 19 nm. We have also shown that a sufficient amount of atomic hydrogen on the growth surface essential for the formation of nanocrystalline silicon is obtained through highly-effective dissociation of silane and hydrogen molecules in the high-density inductively coupled plasmas. © 2009 The Royal Society of Chemistry.
Resumo:
The kinetics of saturation of Ni catalyst nanoparticle patterns of the three different degrees of order, used as a model for the growth of carbon nanotips on Si, is investigated numerically using a complex model that involves surface diffusion and ion motion equations. It is revealed that Ni catalyst patterns of different degrees of order, with Ni nanoparticle sizes up to 12.5 nm, exhibit different kinetics of saturation with carbon on the Si surface. It is shown that in the cases examined (surface coverage in the range of 1-50%, highly disordered Ni patterns) the relative pattern saturation factor calculated as the ratio of average incubation times for the processes conducted in the neutral and ionized gas environments reaches 14 and 3.4 for Ni nanoparticles of 2.5 and 12.5 nm, respectively. In the highly ordered Ni patterns, the relative pattern saturation factor reaches 3 for nanoparticles of 2.5 nm and 2.1 for nanoparticles of 12.5 nm. Thus, more simultaneous saturation of Ni catalyst nanoparticles of sizes in the range up to 12.5 nm, deposited on the Si substrate, can be achieved in the low-temperature plasma environment than with the neutral gas-based process.
Resumo:
Background and purpose Non-traumatic osteonecrosis is a progressive disease with multiple etiologies. It affects younger individuals more and more, often leading to total hip arthroplasty. We investigated whether there is a correlation between inducible nitric oxide synthase (iNOS) expression and osteocyte apoptosis in non-traumatic osteonecrosis. Patients and methods We collected and studied 20 human idiopathic, non-traumatic osteonecrosis femoral heads. Subchondral bone samples in the non-sclerotic region (n = 30), collected from osteoarthritis patients, were used as controls. Spontaneously hypertensive rats were used as a model for osteonecrosis in the study. We used scanning electron microscopy, TUNEL assay, and immunohistochemical staining to study osteocyte changes and apoptosis. Results The morphology of osteocytes in the areas close to the necrotic region changed and the number of apoptotic osteocytes increased in comparison with the same region in control groups. The expression of iNOS and cytochrome C in osteocytes increased while Bax expression was not detectable in osteonecrosis samples. Using spontaneously hypertensive rats, we found a positive correlation between iNOS expression and osteocyte apoptosis in the osteonecrotic region. iNOS inhibitor (aminoguanidine) added to the drinking water for 5 weeks reduced the production of iNOS and osteonecrosis compared to a control group without aminoguanidine. Interpretation Our findings show that increased iNOS expression can lead to osteocyte apopotosis in idiopathic, non-traumatic osteonecrosis and that an iNOS inhibitor may prevent the progression of the disease.
Resumo:
The controlled growth of ultra-small Ge/Si quantum dot (QD) nuclei (≈1 nm) suitable for the synthesis of uniform nanopatterns with high surface coverage, is simulated using atom-only and size non-uniform cluster fluxes. It is found that seed nuclei of more uniform sizes are formed when clusters of non-uniform size are deposited. This counter-intuitive result is explained via adatom-nanocluster interactions on Si(100) surfaces. Our results are supported by experimental data on the geometric characteristics of QD patterns synthesized by nanocluster deposition. This is followed by a description of the role of plasmas as non-uniform cluster sources and the impact on surface dynamics. The technique challenges conventional growth modes and is promising for deterministic synthesis of nanodot arrays.
Resumo:
Radial and axial distributions of magnetic fields in a low-frequency (∼460 kHz)inductively coupled plasmasource with two internal crossed planar rf current sheets are reported. The internal antenna configuration comprises two orthogonal sets of eight alternately reconnected parallel and equidistant copper litz wires in quartz enclosures and generates three magnetic (H z, H r, and H φ) and two electric (E φ and E r) field components at the fundamental frequency. The measurements have been performed in rarefied and dense plasmas generated in the electrostatic(E) and electromagnetic (H)discharge modes using two miniature magnetic probes. It is shown that the radial uniformity and depth of the rf power deposition can be improved as compared with conventional sources of inductively coupled plasmas with external flat spiral (“pancake”) antennas. Relatively deeper rf power deposition in the plasma source results in more uniform profiles of the optical emission intensity, which indicates on the improvement of the plasma uniformity over large chamber volumes. The results of the numerical modeling of the radial magnetic field profiles are found in a reasonable agreement with the experimental data.
Resumo:
In this paper we make progress towards solving an open problem posed by Katz and Yung at CRYPTO 2003. We propose the first protocol for key exchange among n ≥2k+1 parties which simultaneously achieves all of the following properties: 1. Key Privacy (including forward security) against active attacks by group outsiders, 2. Non-malleability — meaning in particular that no subset of up to k corrupted group insiders can ‘fix’ the agreed key to a desired value, and 3. Robustness against denial of service attacks by up to k corrupted group insiders. Our insider security properties above are achieved assuming the availability of a reliable broadcast channel.
Resumo:
Background: Traditionally communicable diseases were the main causes of burden in developing countries like Nepal. In recent years non-communicable diseases (NCDs), mainly cardiovascular diseases (CVDs), cancer, chronic respiratory diseases and diabetes mellitus, impose a larger disease burden compared to communicable diseases. Most elements of health and medicine policies in Nepal are still focused on communicable diseases. There is limited evidence about NCDs and NCD medicines in Nepal. Aim: To explore the gap between the burden of NCDs and the availability and affordability of NCD medicines in Nepal. Methods: Biomedical databases like Medline, Scopus, Web of Science and other online sources (including Global Burden of Diseases data) were searched for data on the burden of NCDs in term of Disability Adjusted Life Years (DALYs). The Essential Medicines List (EML) of Nepal was compared with World Health Organisation (EML) for inclusion of NCD medicines. Results: In Nepal, NCDs caused nearly 45% of the total 10.5 million DALYs in 2010. CVDs (15.2%), were the leading cause of NCDs burden followed by chronic respiratory diseases (14.7%), cancer (7.3%) and diabetes mellitus (3.2%). One hospital based national survey found that 37% of hospitalised patients had NCDs. Among them, 38% had heart disease followed by COPD (33%) , and diabetes (10%). Most (23 out of 28) non-cancer NCD medicines recommended in WHO-EML were present in Nepal's EML, theoretically indicating good availability. However, it is difficult to say whether they are accessible and affordable due to the lack of adequate data on access and pricing. Conclusion: This study gives some insight into the burden of NCDs. Although NCD medicines are available in Nepal, further research is required to determine whether they are accessible and affordable to the general population.
Resumo:
Non-profit organisations in the aged care sector are currently under pressure from more than just a sheer increase of customers. A need to respond to changing legislative requirements, increased expectations from customers and increasing likelihood of shortage in appropriate experienced staff are also contributing to instability within the sector. This paper will present a longitudinal action research study of a non-profit organisation revisiting its core purpose of providing relevant services and attempting to build a customer-centric method for addressing the current and upcoming change drivers in an Australian aged care context. The study found Design- Led Innovation to be an effective methodology for capturing deep customer insights and conceptualising new business models which address the prevalent change drivers. This paper details a design-led approach to innovation, tailored to a non-profit organisation seeking to better understand its stakeholders and redefine its value offering.