573 resultados para drug distribution
Resumo:
Diffusion weighted magnetic resonance (MR) imaging is a powerful tool that can be employed to study white matter microstructure by examining the 3D displacement profile of water molecules in brain tissue. By applying diffusion-sensitized gradients along a minimum of 6 directions, second-order tensors can be computed to model dominant diffusion processes. However, conventional DTI is not sufficient to resolve crossing fiber tracts. Recently, a number of high-angular resolution schemes with greater than 6 gradient directions have been employed to address this issue. In this paper, we introduce the Tensor Distribution Function (TDF), a probability function defined on the space of symmetric positive definite matrices. Here, fiber crossing is modeled as an ensemble of Gaussian diffusion processes with weights specified by the TDF. Once this optimal TDF is determined, the diffusion orientation distribution function (ODF) can easily be computed by analytic integration of the resulting displacement probability function.
Resumo:
Fractional anisotropy (FA), a very widely used measure of fiber integrity based on diffusion tensor imaging (DTI), is a problematic concept as it is influenced by several quantities including the number of dominant fiber directions within each voxel, each fiber's anisotropy, and partial volume effects from neighboring gray matter. With High-angular resolution diffusion imaging (HARDI) and the tensor distribution function (TDF), one can reconstruct multiple underlying fibers per voxel and their individual anisotropy measures by representing the diffusion profile as a probabilistic mixture of tensors. We found that FA, when compared with TDF-derived anisotropy measures, correlates poorly with individual fiber anisotropy, and may sub-optimally detect disease processes that affect myelination. By contrast, mean diffusivity (MD) as defined in standard DTI appears to be more accurate. Overall, we argue that novel measures derived from the TDF approach may yield more sensitive and accurate information than DTI-derived measures.
Resumo:
High-angular resolution diffusion imaging (HARDI) can reconstruct fiber pathways in the brain with extraordinary detail, identifying anatomical features and connections not seen with conventional MRI. HARDI overcomes several limitations of standard diffusion tensor imaging, which fails to model diffusion correctly in regions where fibers cross or mix. As HARDI can accurately resolve sharp signal peaks in angular space where fibers cross, we studied how many gradients are required in practice to compute accurate orientation density functions, to better understand the tradeoff between longer scanning times and more angular precision. We computed orientation density functions analytically from tensor distribution functions (TDFs) which model the HARDI signal at each point as a unit-mass probability density on the 6D manifold of symmetric positive definite tensors. In simulated two-fiber systems with varying Rician noise, we assessed how many diffusionsensitized gradients were sufficient to (1) accurately resolve the diffusion profile, and (2) measure the exponential isotropy (EI), a TDF-derived measure of fiber integrity that exploits the full multidirectional HARDI signal. At lower SNR, the reconstruction accuracy, measured using the Kullback-Leibler divergence, rapidly increased with additional gradients, and EI estimation accuracy plateaued at around 70 gradients.
Resumo:
This paper describes part of an engineering study that was undertaken to demonstrate that a multi-megawatt Photovoltaic (PV) generation system could be connected to a rural 11 kV feeder without creating power quality issues for other consumers. The paper concentrates solely on the voltage regulation aspect of the study as this was the most innovative part of the study. The study was carried out using the time-domain software package, PSCAD/EMTDC. The software model included real time data input of actual measured load and scaled PV generation data, along with real-time substation voltage regulator and PV inverter reactive power control. The outputs from the model plot real-time voltage, current and power variations throughout the daily load and PV generation variations. Other aspects of the study not described in the paper include the analysis of harmonics, voltage flicker, power factor, voltage unbalance and system losses.
Resumo:
The development of Electric Energy Storage (EES) integrated with Renewable Energy Resources (RER) has increased use of optimum scheduling strategy in distribution systems. Optimum scheduling of EES can reduce cost of purchased energy by retailers while improve the reliability of customers in distribution system. This paper proposes an optimum scheduling strategy for EES and the evaluation of its impact on reliability of distribution system. Case study shows the impact of the proposed strategy on reliability indices of a distribution system.
Resumo:
Distribution Revolution is a collection of interviews with leading film and TV professionals concerning the many ways that digital delivery systems are transforming the entertainment business. These interviews provide lively insider accounts from studio executives, distribution professionals, and creative talent of the tumultuous transformation of film and TV in the digital era. The first section features interviews with top executives at major Hollywood studios, providing a window into the big-picture concerns of media conglomerates with respect to changing business models, revenue streams, and audience behaviors. The second focuses on innovative enterprises that are providing path-breaking models for new modes of content creation, curation, and distribution—creatively meshing the strategies and practices of Hollywood and Silicon Valley. And the final section offers insights from creative talent whose professional practices, compensation, and everyday working conditions have been transformed over the past ten years. Taken together, these interviews demonstrate that virtually every aspect of the film and television businesses is being affected by the digital distribution revolution, a revolution that has likely just begun. Interviewees include: • Gary Newman, Chairman, 20th Century Fox Television • Kelly Summers, Former Vice President, Global Business Development and New Media Strategy, Walt Disney Studios • Thomas Gewecke, Chief Digital Officer and Executive Vice President, Strategy and Business Development, Warner Bros. Entertainment • Ted Sarandos, Chief Content Officer, Netflix • Felicia D. Henderson, Writer-Producer, Soul Food, Gossip Girl • Dick Wolf, Executive Producer and Creator, Law & Order
Resumo:
This thesis examined the level of food safety compliance with government regulations and investigated routes of microbiological contaminations in raw finfish within Vietnamese domestic seafood distribution chains. Findings from direct observation, microbiological analysis and employee surveys were synthesized to identify the main factors affecting food safety and hygiene practices of fish distributors. The studies produced clear recommendations for food safety management in the domestic distribution chains. The findings may contribute to national efforts to decrease the risks of fish-borne illness for consumers in Vietnam.
Resumo:
Pharmacology is the science underpinning dosing, mechanisms of action and effectiveness of drugs. Central to pharmacology, are the studies of pharmacokinetics (PK) and pharmacodynamics (PD). On one hand, PK defines the time-course of drug concentrations in the body and incorporates the broad concepts of drug absorption, distribution, metabolism and elimination. On the other hand, PD describes the relationship between drug concentrations and pharmacological effects. In practice, PK is often referred as “what the body does to the drug” whilst PD as “what the drug does to the body”. Thus, PK/PD describes the relationship between drug dose and pharmacological effects with changes in drug concentrations leading to different pharmacological effects.
Resumo:
Critical illness, acute renal failure and continuous renal replacement therapy (CRRT) are associated with changes in pharmacokinetics. Initial antibiotic dose should be based on published volume of distribution and generally be at least the standard dose, as volume of distribution is usually unchanged or increased. Subsequent doses should be based on total clearance. Total clearance varies with the CRRT clearance which mainly depends on effluent flow rate, sieving coefficient/saturation coefficient. As antibiotic clearance by healthy kidneys is usually higher than clearance by CRRT, except for colistin, subsequent doses should generally be lower than given to patients without renal dysfunction. In the future therapeutic drug monitoring, together with sophisticated pharmacokinetic models taking into account the pharmacokinetic variability, may enable more appropriate individualized dosing.
Resumo:
Diffusion weighted magnetic resonance imaging is a powerful tool that can be employed to study white matter microstructure by examining the 3D displacement profile of water molecules in brain tissue. By applying diffusion-sensitized gradients along a minimum of six directions, second-order tensors (represented by three-by-three positive definite matrices) can be computed to model dominant diffusion processes. However, conventional DTI is not sufficient to resolve more complicated white matter configurations, e.g., crossing fiber tracts. Recently, a number of high-angular resolution schemes with more than six gradient directions have been employed to address this issue. In this article, we introduce the tensor distribution function (TDF), a probability function defined on the space of symmetric positive definite matrices. Using the calculus of variations, we solve the TDF that optimally describes the observed data. Here, fiber crossing is modeled as an ensemble of Gaussian diffusion processes with weights specified by the TDF. Once this optimal TDF is determined, the orientation distribution function (ODF) can easily be computed by analytic integration of the resulting displacement probability function. Moreover, a tensor orientation distribution function (TOD) may also be derived from the TDF, allowing for the estimation of principal fiber directions and their corresponding eigenvalues.
Resumo:
Alcohol is implicated in over 60 diseases and injuries and accounted for 6.2 per cent of all male deaths globally in 2004 (WHO, 2011). Alcohol and other drug (AOD) abuse causes significant individual, family and social harms at all age levels and across all socioeconomic groups. These may result from intoxication (e.g., overdose, vulnerability to physical injury/trauma or death, consequences of impulsive behaviour, aggression and driving under the influence) and longer-term consequences (e.g., alcohol or drug-related brain injury, cardiovascular and liver diseases, blood borne viruses e.g., Chikritzhs et al., 2003, Roxburgh et al., 2013). Mental health problems may be triggered or exacerbated, and family breakdown, poor self-esteem, legal issues and lack of community engagement may also be evident. Despite the prevalence of substance use disorders and evident consequences for the individual, family and wider community, it would seem that health professionals, including psychologists, are reluctant to ask about substance use.
Resumo:
Cord cutting refers to the act of cable and satellite consumers cancelling their subscriptions and opting instead for non-traditional distribution outlets, like streaming media platforms. The trend has been the subject of much debate in the trade press and a source of much concern for the industry. Yet many questions remain unanswered: Is it really a major trend? Does it save consumers money? Can viewers still find the content they love? How do we even “cut the cord” anyway?
Resumo:
Recent research has identified marine molluscs as an excellent source of omega-3 long-chain polyunsaturated fatty acids (lcPUFAs), based on their potential for endogenous synthesis of lcPUFAs. In this study we generated a representative list of fatty acyl desaturase (Fad) and elongation of very long-chain fatty acid (Elovl) genes from major orders of Phylum Mollusca, through the interrogation of transcriptome and genome sequences, and various publicly available databases. We have identified novel and uncharacterised Fad and Elovl sequences in the following species: Anadara trapezia, Nerita albicilla, Nerita melanotragus, Crassostrea gigas, Lottia gigantea, Aplysia californica, Loligo pealeii and Chlamys farreri. Based on alignments of translated protein sequences of Fad and Elovl genes, the haeme binding motif and histidine boxes of Fad proteins, and the histidine box and seventeen important amino acids in Elovl proteins, were highly conserved. Phylogenetic analysis of aligned reference sequences was used to reconstruct the evolutionary relationships for Fad and Elovl genes separately. Multiple, well resolved clades for both the Fad and Elovl sequences were observed, suggesting that repeated rounds of gene duplication best explain the distribution of Fad and Elovl proteins across the major orders of molluscs. For Elovl sequences, one clade contained the functionally characterised Elovl5 proteins, while another clade contained proteins hypothesised to have Elovl4 function. Additional well resolved clades consisted only of uncharacterised Elovl sequences. One clade from the Fad phylogeny contained only uncharacterised proteins, while the other clade contained functionally characterised delta-5 desaturase proteins. The discovery of an uncharacterised Fad clade is particularly interesting as these divergent proteins may have novel functions. Overall, this paper presents a number of novel Fad and Elovl genes suggesting that many mollusc groups possess most of the required enzymes for the synthesis of lcPUFAs.
Resumo:
Distributed systems are widely used for solving large-scale and data-intensive computing problems, including all-to-all comparison (ATAC) problems. However, when used for ATAC problems, existing computational frameworks such as Hadoop focus on load balancing for allocating comparison tasks, without careful consideration of data distribution and storage usage. While Hadoop-based solutions provide users with simplicity of implementation, their inherent MapReduce computing pattern does not match the ATAC pattern. This leads to load imbalances and poor data locality when Hadoop's data distribution strategy is used for ATAC problems. Here we present a data distribution strategy which considers data locality, load balancing and storage savings for ATAC computing problems in homogeneous distributed systems. A simulated annealing algorithm is developed for data distribution and task scheduling. Experimental results show a significant performance improvement for our approach over Hadoop-based solutions.
Resumo:
Historically, drug use has been understood as a problem of epidemiology, psychiatry, physiology, and criminality requiring legal and medical governance. Consequently drug research tends to be underpinned by an imperative to better govern, and typically proposes policy interventions to prevent or solve drug problems. We argue that categories of ‘addictive’ and ‘recreational’ drug use are discursive forms of governance that are historically, politically and socially contingent. These constructions of the drug problem shape what drug users believe about themselves and how they enact these beliefs in their drug use practices. Based on qualitative interviews with young illicit drug users in Brisbane, Australia, this paper uses Michel Foucault’s concept of governmentality to provide insights into how the governance of illicit drugs intersects with self-governance to create a drug user self. We propose a reconceptualisation of illicit drug use that takes into account the contingencies and subjective factors that shape the drug experience. This allows for an understanding of the relationships between discourses, policies, and practices in constructions of illicit drug users.