507 resultados para Vehicle Dynamics
Resumo:
Objective To examine the association between glaucoma and motor vehicle collision (MVC) involvement among older drivers, including the role of visual field impairment that may underlie any association found. Design A retrospective population-based study Participants A sample of 2,000 licensed drivers aged 70 years and older who reside in north central Alabama. Methods At-fault MVC involvement for five years prior to enrollment was obtained from state records. Three aspects of visual function were measured: habitual binocular distance visual acuity, binocular contrast sensitivity and the binocular driving visual field constructed from combining the monocular visual fields of each eye. Poisson regression was used to calculate crude and adjusted rate ratios (RR) and 95% confidence intervals (CI). Main Outcomes Measures At-fault MVC involvement for five years prior to enrollment. Results Drivers with glaucoma (n = 206) had a 1.65 (95% confidence interval [CI] 1.20-2.28, p = 0.002) times higher MVC rate compared to those without glaucoma after adjusting for age, gender and mental status. Among those with glaucoma, drivers with severe visual field loss had higher MVC rates (RR = 2.11, 95% CI 1.09-4.09, p = 0.027), whereas no significant association was found among those with impaired visual acuity and contrast sensitivity. When the visual field was sub-divided into six regions (upper, lower, left, and right visual fields; horizontal and vertical meridians), we found that impairment in the left, upper or lower visual field was associated with higher MVC rates, and an impaired left visual field showed the highest RR (RR = 3.16, p = 0.001) compared to other regions. However, no significant association was found in deficits in the right side or along the horizontal or vertical meridian. Conclusions A population-based study suggests that older drivers with glaucoma are more likely to have a history of at-fault MVC involvement than those without glaucoma. Impairment in the driving visual field in drivers with glaucoma appears to have an independent association with at-fault MVC involvement, whereas visual acuity and contrast sensitivity impairments do not.
Resumo:
Inappropriate speed and speeding are among the highest causes of crashes in the heavy vehicle industry. Truck drivers are subjected to a broad range of influences on their behaviour including industrial pressures, company monitoring and police enforcement. Further, drivers have a high level of autonomy over their own behaviour. As such it is important to understand how these external influences interact with commonly shared beliefs, attitudes and values of heavy vehicle drivers to influence their behaviour. The present study uses a re-conceptualisation of safety culture to explore the behaviours of driving at an inappropriate speed and speeding in the heavy vehicle industry. A series of case studies, consisting of interviews and ride-along observations, were conducted with three transport organisations to explore the effect of culture on safety in the heavy vehicle industry. Results relevant to inappropriate speed are reported and discussed. It was found that organisational management through monitoring, enforcement and payment, police enforcement, customer standards and vehicle design factors could all reduce the likelihood of driving at inappropriate speeds under some circumstances. However, due to weaknesses in the ability to accurately monitor appropriate speed, this behaviour was primarily influenced by cultural beliefs, attitudes and values. Truck drivers had a tendency to view speeding as relatively safe, had a desire to speed to save time and increase personal income, and thus often attempted to speed without detection. When drivers saw speeding as dangerous, however, they were more likely to drive safely. Implications for intervention are discussed.
Resumo:
Motorcyclists were involved in 6.4% of all police-reported crashes and 12.5% of all fatal crashes in Queensland during 2004-2011. Of these crashes, 43% were single-vehicle (SV) and 57% were multi-vehicle (MV). The overall reduction in motorcycle crashes in this period masked different trends: single-vehicle crashes increased while MV motorcycle crashes decreased. However, little research has been undertaken to understand the similarities and differences between SV and MV motorcycle crashes in Queensland and the factors underlying these diverging trends. The descriptive analyses and regression model developed here confirm international research findings regarding the greater role of road infrastructure factors in SV crashes. In particular, road geometric factors such as horizontal and vertical alignment and road surface factors such as sealed/unsealed and wet/dry were more important in SV than MV crashes.
Resumo:
Crystallization of amorphous germanium (a-Ge) by laser or electron beam heating is a remarkably complex process that involves several distinct modes of crystal growth and the development of intricate microstructural patterns on the nanosecond to ten microsecond time scales. Here we use dynamic transmission electron microscopy (DTEM) to study the fast, complex crystallization dynamics with 10 nm spatial and 15 ns temporal resolution. We have obtained time-resolved real-space images of nanosecond laser-induced crystallization in a-Ge with unprecedentedly high spatial resolution. Direct visualization of the crystallization front allows for time-resolved snapshots of the initiation and roughening of the dendrites on submicrosecond time scales. This growth is followed by a rapid transition to a ledgelike growth mechanism that produces a layered microstructure on a time scale of several microseconds. This study provides insights into the mechanisms governing this complex crystallization process and is a dramatic demonstration of the power of DTEM for studying time-dependent material processes far from equilibrium.
Resumo:
This paper presents a motion control system for guidance of an underactuated Unmanned Underwater Vehicle (UUV) on a helical trajectory. The control strategy is developed using Port-Hamiltonian theory and interconnection and damping assignment passivity-based control. Using energy routing, the trajectory of a virtual fully actuated plant is guided onto a vector field. A tracking controller is then used that commands the underactuated plant to follow the velocity of the virtual plant. An integral control is inserted between the two control layers, which adds robustness and disturbance rejection to the design.
Resumo:
Cardiovascular disease is the leading causes of death in the developed world. Wall shear stress (WSS) is associated with the initiation and progression of atherogenesis. This study combined the recent advances in MR imaging and computational fluid dynamics (CFD) and evaluated the patient-specific carotid bifurcation. The patient was followed up for 3 years. The geometry changes (tortuosity, curvature, ICA/CCA area ratios, central to the cross-sectional curvature, maximum stenosis) and the CFD factors (Velocity distribute, Wall Shear Stress (WSS) and Oscillatory Shear Index (OSI)) were compared at different time points.The carotid stenosis was a slight increase in the central to the cross-sectional curvature, and it was minor and variable curvature changes for carotid centerline. The OSI distribution presents ahigh-values in the same region where carotid stenosis and normal border, indicating complex flow and recirculation.The significant geometric changes observed during the follow-up may also cause significant changes in bifurcation hemodynamics.
Resumo:
Reduced economic circumstances havemoved management goals towards higher profit, rather than maximum sustainable yields in several Australian fisheries. The eastern king prawn is one such fishery, for which we have developed new methodology for stock dynamics, calculation of model-based and data-based reference points and management strategy evaluation. The fishery is notable for the northward movement of prawns in eastern Australian waters, from the State jurisdiction of New South Wales to that of Queensland, as they grow to spawning size, so that vessels fishing in the northern deeper waters harvest more large prawns. Bioeconomic fishing data were standardized for calibrating a length-structured spatial operating model. Model simulations identified that reduced boat numbers and fishing effort could improve profitability while retaining viable fishing in each jurisdiction. Simulations also identified catch rate levels that were effective for monitoring in simple within-year effort-control rules. However, favourable performance of catch rate indicators was achieved only when a meaningful upper limit was placed on total allowed fishing effort. Themethods and findings will allow improved measures for monitoring fisheries and inform decision makers on the uncertainty and assumptions affecting economic indicators.
Resumo:
This study uses agent based modelling to simulate the worker interactions within a workplace and to investigate how the interactions can have impact on the workplace dynamics. Two new models (Bounded Confidence with Bias model and Relative Agreement with Bias model) are built based on the theoretical foundation of two existing models. A new factor, namely bias, is added into the new models which raises several issues to be studied.
Resumo:
This paper presents the validation of a manoeuvring model for a novel 127m-vehicle-passenger trimaran via full scale trials. The adopted structure of the model is based on a model previously proposed in the literature with some simplifications. The structure of the model is discussed. Then initial parameter estimates are computed, and the final set of parameters are obtained via adjustments based on engineering judgement and application of a genetic algorithm so as to match the data of the trials. The validity of the model is also assessed with data from a trial different from the one use for the parameter adjustment. The model shows good agreement with the trial data.
Resumo:
Speed is recognised as a key contributor to crash likelihood and severity, and to road safety performance in general. Its fundamental role has been recognised by making Safe Speeds one of the four pillars of the Safe System. In this context, impact speeds above which humans are likely to sustain fatal injuries have been accepted as a reference in many Safe System infrastructure policy and planning discussions. To date, there have been no proposed relationships for impact speeds above which humans are likely to sustain fatal or serious (severe) injury, a more relevant Safe System measure. A research project on Safe System intersection design required a critical review of published literature on the relationship between impact speed and probability of injury. This has led to a number of questions being raised about the origins, accuracy and appropriateness of the currently accepted impact speed–fatality probability relationships (Wramborg 2005) in many policy documents. The literature review identified alternative, more recent and more precise relationships derived from the US crash reconstruction databases (NASS/CDS). The paper proposes for discussion a set of alternative relationships between vehicle impact speed and probability of MAIS3+ (fatal and serious) injury for selected common crash types. Proposed Safe System critical impact speed values are also proposed for use in road infrastructure assessment. The paper presents the methodology and assumptions used in developing these relationships. It identifies further research needed to confirm and refine these relationships. Such relationships would form valuable inputs into future road safety policies in Australia and New Zealand.
Resumo:
Road transport plays a significant role in various industries and mobility services around the globe and has a vital impact on our daily lives. However it also has serious impacts on both public health and the environment. In-vehicle feedback systems are a relatively new approach to encouraging driver behaviour change for improving fuel efficiency and safety in automotive environments. While many studies claim that the adoption of eco-driving practices, such as eco-driving training programs and in-vehicle feedback to drivers, has the potential to improve fuel efficiency, limited research has integrated safety and eco-driving. Therefore, this research seeks to use human factors related theories and practices to inform the design and evaluation of an in-vehicle Human Machine Interface (HMI) providing real-time driver feedback with the aim of improving both fuel efficiency and safety.
Resumo:
The emphasis on collegiality and collaboration in the literature on teachers' work and school reform has tended to underplay the significance of teacher autonomy. This thesis explores the dynamics of teachers' understandings and experiences of individual teacher autonomy (as contrasted with collective autonomy) in an independent school in Queensland which promoted itself as a 'teachers' school' with a strong commitment to individual teacher autonomy. The research was a case study which drew on methodological signposts from critical, feminist and traditional ethnography. Intensive fieldwork in the school over five months incorporated the ethnographic techniques of observation, interviews and document analysis. Teachers at Thornton College understood their experience of individual autonomy at three interrelated levels--in terms of their work in the classroom, their working life in the school, and their voice in the decision-making processes of the school. They felt that they experienced a great deal of individual autonomy at each of these three levels. These understandings and experiences of autonomy were encumbered or enabled by a range of internal and external stakeholder groups. There were also a number of structural influences (community perceptions, market forces, school size, time and bureaucracy) emerging from the economic, social and political structures in Australian society which influenced the experience of autonomy by teachers. The experience of individual teacher autonomy was constantly shifting, but there were some emergent patterns. Consensus on educational goals and vision, and strong expressions of trust and respect between teachers and stakeholders in the school, characterised the contexts in which teachers felt they experienced high levels of autonomy in their work. The demand for accountability and desire for relatedness motivated stakeholders and structural forces to influence teacher autonomy. Some significant gaps emerged between the rhetoric of a commitment to individual teacher autonomy and decision-making practices in the school, that gave ultimate power to the co-principals. Despite the rhetoric and promotion of non-hierarchical structures and collaborative decision-making processes, many teachers perceived that their experience of individual autonomy remained subject to the exercise of 'partial democracy' by school leaders.
Resumo:
Mathematical models describing the movement of multiple interacting subpopulations are relevant to many biological and ecological processes. Standard mean-field partial differential equation descriptions of these processes suffer from the limitation that they implicitly neglect to incorporate the impact of spatial correlations and clustering. To overcome this, we derive a moment dynamics description of a discrete stochastic process which describes the spreading of distinct interacting subpopulations. In particular, we motivate our model by mimicking the geometry of two typical cell biology experiments. Comparing the performance of the moment dynamics model with a traditional mean-field model confirms that the moment dynamics approach always outperforms the traditional mean-field approach. To provide more general insight we summarise the performance of the moment dynamics model and the traditional mean-field model over a wide range of parameter regimes. These results help distinguish between those situations where spatial correlation effects are sufficiently strong, such that a moment dynamics model is required, from other situations where spatial correlation effects are sufficiently weak, such that a traditional mean-field model is adequate.
Resumo:
This paper presents the design, implementation and evaluation of a collaborative learning activity designed to replace traditional face-to-face lectures in a large classroom. This activity aims to better engage the students with their learning and improve the students’ experience and outcomes. This project is implemented in the Fluid Mechanics unit of the Mechanical Engineering degree at the Queensland University of Technology to introduce students with the concept, terminology and process of Computational Fluid Dynamics (CFD). The approach integrates a constructive collaborative assignment which is a key element in the overall quality of teaching and learning, and an integral component of the students’ experience. A detailed survey, given to the students, showed an overall high level of satisfaction. However, the results also highlighted the gap between students’ expectations both for contents and assignment and teacher expectations. Discussions to address this issue are presented in the paper based on a critical reflection.
Resumo:
Background A pandemic strain of influenza A spread rapidly around the world in 2009, now referred to as pandemic (H1N1) 2009. This study aimed to examine the spatiotemporal variation in the transmission rate of pandemic (H1N1) 2009 associated with changes in local socio-environmental conditions from May 7–December 31, 2009, at a postal area level in Queensland, Australia. Method We used the data on laboratory-confirmed H1N1 cases to examine the spatiotemporal dynamics of transmission using a flexible Bayesian, space–time, Susceptible-Infected-Recovered (SIR) modelling approach. The model incorporated parameters describing spatiotemporal variation in H1N1 infection and local socio-environmental factors. Results The weekly transmission rate of pandemic (H1N1) 2009 was negatively associated with the weekly area-mean maximum temperature at a lag of 1 week (LMXT) (posterior mean: −0.341; 95% credible interval (CI): −0.370–−0.311) and the socio-economic index for area (SEIFA) (posterior mean: −0.003; 95% CI: −0.004–−0.001), and was positively associated with the product of LMXT and the weekly area-mean vapour pressure at a lag of 1 week (LVAP) (posterior mean: 0.008; 95% CI: 0.007–0.009). There was substantial spatiotemporal variation in transmission rate of pandemic (H1N1) 2009 across Queensland over the epidemic period. High random effects of estimated transmission rates were apparent in remote areas and some postal areas with higher proportion of indigenous populations and smaller overall populations. Conclusions Local SEIFA and local atmospheric conditions were associated with the transmission rate of pandemic (H1N1) 2009. The more populated regions displayed consistent and synchronized epidemics with low average transmission rates. The less populated regions had high average transmission rates with more variations during the H1N1 epidemic period.