715 resultados para Sommerfeld effect


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper compares costuming practices in Baz Luhrmann’s Australia (2008) and John Hillcoat’s The Proposition (2005) and argues that high production values, such as in the blockbuster Australia, are not neutral mechanisms of production, but powerful prescriptive elements which do not result in a successful representation of cultural specificity. Australia is a typical blockbuster, it employs a large number of extras, it features compelling landscape shots, has been shot across four different locations and sets, and, importantly, is an international production with the 20th Century Fox. The film’s costumes were designed by Catherine Martin, who received an Oscar nomination in 2009. While global exposure of fashion in film and through celebrities’ endorsements has consolidated a historical synergy between the fashion industry and Hollywood, the Australian film and fashion industries have had a very limited exchange. Baz Luhrmann’s film is Australia’s first instance of promo-costuming and use of tie-in labels (Ferragamo, R.M.Williams, Prada, Paspaley). Catherine Martin thoroughly researched 1930s women’s wear, indigenous and stockmen’s clothing, and set up to make all costumes with a large team of costumiers and seamstresses, striving for authenticity. The Proposition won its costume designer Margot Wilson an AFI in 2005 for best costume, but compared to Australia the story, location and costumes are far harsher. Filmed around Winton in far west Queensland, the director John Hillcoat and Director of Photography Benoit Delhomme were insistent about realism, and emphasising the harshness of the Australian landscape. The realism of the costumes was derived from the fabrics and manufacturing, as well as the way they were shot, with the actors often wearing two or three layers of heavy wool during days of shooting in 50 degree heat, and the details of making and breaking down. The implication is that both films are culturally specific as they both deal with an Australian story. However, Australia is clearly produced according to a Hollywood blockbuster model, and closely matches Hollywood’s narrative and aesthetic characteristics, while The Proposition is a more modest film that eschews these conventions of beauty and glossed history. Despite its western genre-orientation, The Proposition is more successful than Australia when it comes to costuming, because its costumes are not only functional to the narrative, but, in Roland Barthes’ words, they also fulfil a prestation. This prestation highlights the social and cultural conflicts on which colonial Australia was founded, instead of gilding, and gliding, over them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer is one of the most life-threatening diseases with many forms still regarded as incurable. The conventional cancer treatments have unwanted side effects such as the death of normal cells. A therapy that can accurately target and effectively kill tumor cells could address the inadequacies of the available therapies. Atmospheric gas plasmas (AGP) that are able to specifically kill cancerous cells offer a promising alternative approach compared to conventional therapies. AGP have been shown to exploit tumor-specific genetic defects and a recent trial in mice has confirmed its antitumor effects. The mechanism by which the AGP act on tumor cells but not normal cells is not fully understood. A review of the current literature suggests that reactive oxygen species (ROS) generated by AGP induce death of cancer cells by impairing the function of intracellular regulatory factors. The majority of cancer cells are defective in tumor suppressors that interfere normal cell growth pathways. It appears that pro-oncogene or tumor suppressor-dependent regulation of antioxidant/or ROS signaling pathways may be involved in AGP-induced cancer cell death. The toxic effects of ROS are mitigated by normal cells by adjustment of their metabolic pathways. On the other hand, tumor cells are mostly defective in several regulatory signaling pathways which lead to the loss of metabolic balance within the cells and consequently, the regulation of cell growth. This review article evaluates the impact of AGP on the activation of cellular signaling and its importance for exploring mechanisms for safe and efficient anticancer therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Textured silicon surfaces are widely used in manufacturing of solar cells due to increasing the light absorption probability and also the antireflection properties. However, these Si surfaces have a high density of surface defects that need to be passivated. In this study, the effect of the microscopic surface texture on the plasma surface passivation of solar cells is investigated. The movement of 105 H+ ions in the texture-modified plasma sheath is studied by Monte Carlo numerical simulation. The hydrogen ions are driven by the combined electric field of the plasma sheath and the textured surface. The ion dynamics is simulated, and the relative ion distribution over the textured substrate is presented. This distribution can be used to interpret the quality of the Si dangling bonds saturation and consequently, the direct plasma surface passivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrogenated carbon nanotips (NCNTPs) have been synthesized using customized plasma-enhanced hot filament chemical vapor deposition. The morphological, structural, and photoluminescent properties of the NCNTPs are investigated using scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and photoluminescence spectroscopy. The photoluminescence measurements show that the NCNTPs predominantly emit a green band at room temperature while strong blue emission is generated at 77 K. It is shown that these very different emission behaviors are related to the change of the optical band-gap and the concentration of the paramagnetic defects of the carbon nanotips. The studies shed light on the controversies on the photoluminescence mechanisms of carbon-based amorphous films measured at different temperatures. The relevance of the results to the use of nitrogenated carbon nanotips in light-emitting optoelectronic devices is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Controlling the electrical resistance of granular thin films is of great importance for many applications, yet a full understanding of electron transport in such films remains a major challenge. We have studied experimentally and by model calculations the temperature dependence of the electrical resistance of ultrathin gold films at temperatures between 2 K and 300 K. Using sputter deposition, the film morphology was varied from a discontinuous film of weakly coupled meandering islands to a continuous film of strongly coupled coalesced islands. In the weak-coupling regime, we compare the regular island array model, the cotunneling model, and the conduction percolation model with our experimental data. We show that the tunnel barriers and the Coulomb blockade energies are important at low temperatures and that the thermal expansion of the substrate and the island resistance affect the resistance at high temperatures. At low temperatures our experimental data show evidence for a transition from electron cotunneling to sequential tunneling but the data can also be interpreted in terms of conduction percolation. The resistivity and temperature coefficient of resistance of the meandering gold islands are found to resemble those of gold nanowires. We derive a simple expression for the temperature at which the resistance changes from non-metal-like behavior into metal-like behavior. In the case of strong island coupling, the total resistance is solely determined by the Ohmic island resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An advanced combination of numerical models, including plasma sheath, ion- and radical-induced species creation and plasma heating effects on the surface and within a Au catalyst nanoparticle, is used to describe the catalyzed growth of Si nanowires in the sheath of a low-temperature and low-pressure plasma. These models have been used to explain the higher nanowire growth rates, low-energy barriers, much thinner Si nanowire nucleation and the less effective Gibbs–Thomson effect in reactive plasma processes, compared with those of neutral gas thermal processes. The effects of variation in the plasma sheath parameters and substrate potential on Si nanowire nucleation and growth have also been investigated. It is shown that increasing the plasma-related effects leads to decreases in the nucleation energy barrier and the critical nanoparticle radius, with the Gibbs–Thomson effect diminished, even at low temperatures. The results obtained are consistent with available experimental results and open a path toward the energy- and matter-efficient nucleation and growth of a broad range of one-dimensional quantum structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel nanostructures such as vertically aligned carbon nanotube (CNT) arrays have received increasing interest as drug delivery carriers. In the present study, two CNT arrays with extreme surface wettabilities are fabricated and their effects on the release of recombinant human bone morphogenetic protein-2 (rhBMP-2) are investigated. It is found that the superhydrophilic arrays retained a larger amount of rhBMP-2 than the superhydrophobic ones. Further use of a poloxamer diffusion layer delayed the initial burst and resulted in a greater total amount of rhBMP-2 released from both surfaces. In addition, rhBMP-2 bound to the superhydrophilic CNT arrays remained bioactive while they denatured on the superhydrophobic surfaces. These results are related to the combined effects of rhBMP-2 molecules interacting with poloxamer and the surface, which could be essential in the development of advanced carriers with tailored surface functionalities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article quantifies the effect of the operating pressure of the H 2 + C 2H 4 gas mixture on the current density and threshold voltage of the electron emission from dense forests of multiwalled carbon nanotubes synthesized using thermal catalytic Chemical Vapor Deposition under near atmospheric pressure process conditions. The results suggest that in the pressure range of interest 400-700 Torr the field emission properties can be substantially improved by operating the process at lower gas pressures when the nanostructure aspect ratios are higher. The obtained threshold voltage ∼1.75 V/μm and the emission current densities ∼10 mA/cm 2 offer competitive advantages compared with the results reported by other authors. Copyright

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility to discriminate between the relative importance of the fluxes of energy and matter in plasma-surface interaction is demonstrated by the energy flux measurements in low-temperature plasmas ignited by the radio frequency discharge (power and pressure ranges 50-250 W and 8-11.5 Pa) in Ar, Ar+ H2, and Ar+ H2 + CH4 gas mixtures typically used in nanoscale synthesis and processing of silicon- and carbon-based nanostructures. It is shown that by varying the gas composition and pressure, the discharge power, and the surface bias one can effectively control the surface temperature and the matter supply rates. The experimental findings are explained in terms of the plasma-specific reactions in the plasma bulk and on the surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the application low-temperature plasmas for roughening Si surfaces which is becoming increasingly important for a number of applications ranging from Si quantum dots to cell and protein attachment for devices such as "laboratory on a chip" and sensors. It is a requirement that Si surface roughening is scalable and is a single-step process. It is shown that the removal of naturally forming SiO2 can be used to assist in the roughening of the surface using a low-temperature plasma-based etching approach, similar to the commonly used in semiconductor micromanufacturing. It is demonstrated that the selectivity of SiO2 /Si etching can be easily controlled by tuning the plasma power, working gas pressure, and other discharge parameters. The achieved selectivity ranges from 0.4 to 25.2 thus providing an effective means for the control of surface roughness of Si during the oxide layer removal, which is required for many advance applications in bio- and nanotechnology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotips have been synthesized from a thin carbon film deposited on silicon by bias-enhanced hot filament chemical vapor deposition under different process parameters. The results of scanning electron microscopy indicate that high-quality carbon nanotips can only be obtained under conditions when the ion flux is effectively drawn from the plasma sustained in a CH4 + NH3 + H2 gas mixture. It is shown that the morphology of the carbon nanotips can be controlled by varying the process parameters such as the applied bias, gas pressure, and the NH3 / H2 mass flow ratios. The nanotip formation process is examined through a model that accounts for surface diffusion, in addition to sputtering and deposition processes included in the existing models. This model makes it possible to explain the major difference in the morphologies of the carbon nanotips formed without and with the aid of the plasma as well as to interpret the changes of their aspect ratio caused by the variation in the ion/gas fluxes. Viable ways to optimize the plasma-based process parameters to synthesize high-quality carbon nanotips are suggested. The results are relevant to the development of advanced plasma-/ion-assisted methods of nanoscale synthesis and processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on ab initio numerical simulations of the effect of Co and Cu dopings on the electronic structure and optical properties of ZnO, pursued to develop diluted magnetic semiconductors vitally needed for spintronic applications. The simulations are based upon the Perdew-Burke-Enzerh generalized gradient approximation on the density functional theory. It is revealed that the electrons with energies close to the Fermi level effectively transfer only between Cu and Co ions which substitute Zn atoms, and are located in the neighbor sites connected by an O ion. The simulation results are consistent with the experimental observations that addition of Cu helps achieve stable ferromagnetism of Co-doped ZnO. It is shown that simultaneous insertion of Co and Cu atoms leads to smaller energy band gap, redshift of the optical absorption edge, as well as significant changes in the reflectivity, dielectric function, refractive index, and electron energy loss function of ZnO as compared to the doping with either Co or Cu atoms. These highly unusual optical properties are explained in terms of the computed electronic structure and are promising for the development of the next-generation room-temperature ferromagnetic semiconductors for future spintronic devices on the existing semiconductor micromanufacturing platform.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high level of control over quantum dot (QD) properties such as size and composition during fabrication is required to precisely tune the eventual electronic properties of the QD. Nanoscale synthesis efforts and theoretical studies of electronic properties are traditionally treated quite separately. In this paper, a combinatorial approach has been taken to relate the process synthesis parameters and the electron confinement properties of the QDs. First, hybrid numerical calculations with different influx parameters for Si1-x Cx QDs were carried out to simulate the changes in carbon content x and size. Second, the ionization energy theory was applied to understand the electronic properties of Si1-x Cx QDs. Third, stoichiometric (x=0.5) silicon carbide QDs were grown by means of inductively coupled plasma-assisted rf magnetron sputtering. Finally, the effect of QD size and elemental composition were then incorporated in the ionization energy theory to explain the evolution of the Si1-x Cx photoluminescence spectra. These results are important for the development of deterministic synthesis approaches of self-assembled nanoscale quantum confinement structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the film thickness and postannealing temperature on visible photoluminescence (PL) from Si Nx films synthesized by plasma-assisted radio frequency magnetron sputtering on Si O2 buffer layers is investigated. It is shown that strong visible PL is achieved at annealing temperatures above 650 °C. The optimum annealing temperature for the maximum PL yield strongly depends on the film thickness and varies from 800 to 1200°C. A comparative composition-structure-property analysis reveals that the PL intensity is directly related to the content of the Si-O and Si-N bonds in the Si Nx films. Therefore, sufficient oxidation and moderate nitridation of Si Nx Si O2 films during the plasma-based growth process are crucial for a strong PL yield. Excessively high annealing temperatures lead to weakened Si-N bonds in thinner Si Nx films, which eventually results in a lower PL intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of studies on the growth of high-aspect nanostructures in low-temperature non-equilibrium plasmas of reactive gas mixtures with or without hydrogen are presented. The results suggest that the hydrogen in the reactive plasma strongly affects the length of the nanostructures. This phenomenon is explained in terms of selective hydrogen passivation of the lateral and top surfaces of the surface-supported nanostructures. The theoretical model describes the effect of the atomic hydrogen passivation on the nanostructure shape and predicts the critical hydrogen coverage of the lateral surfaces necessary to achieve the nanostructure growth with the pre-determined shape. Our results demonstrate that the use of a strongly non-equilibrium plasma is very effective in significantly improving the shape control of quasi-one-dimensional single-crystalline nanostructures.