671 resultados para Open Robot Project
Resumo:
With the goal of improving the academic performance of primary and secondary students in Malaysia by 2020, the Malaysian Ministry of Education has made a significant investment in developing a Smart School Project. The aim of this project is to introduce interactive courseware into primary and secondary schools across Malaysia. As has been the case around the world, interactive courseware is regarded as a tool to motivate students to learn meaningfully and enhance learning experiences. Through an initial pilot phase, the Malaysian government has commissioned the development of interactive courseware by a number of developers and has rolled this courseware out to selected schools over the past 12 years. However, Ministry reports and several independent researchers have concluded that its uptake has been limited, and that much of the courseware has not been used effectively in schools. This has been attributed to weaknesses in the interface design of the courseware, which, it has been argued, fails to accommodate the needs of students and teachers. Taking the Smart School Project's science courseware as a sample, this research project has investigated the extent, nature, and reasons for the problems that have arisen. In particular, it has focused on examining the quality and effectivity of the interface design in facilitating interaction and supporting learning experiences. The analysis has been conducted empirically, by first comparing the interface design principles, characteristics and components of the existing courseware against best practice, as described in the international literature, as well as against the government guidelines provided to the developers. An ethnographic study was then undertaken to observe how the courseware is used and received in the classroom, and to investigate the stakeholders' (school principal, teachers and students') perceptions of its usability and effectivity. Finally, to understand how issues may have arisen, a review of the development process has been undertaken and it has been compared to development methods recommended in the literature, as well as the guidelines provided to the developers. The outcomes of the project include an empirical evaluation of the quality of the interface design of the Smart School Project's science courseware; the identification of other issues that have affected its uptake; an evaluation of the development process and, out of this, an extended set of principles to guide the design and development of future Smart School Project courseware to ensure that it accommodates the various stakeholders' needs.
Resumo:
The structures of the cyclic imides cis-2-(2-fluorophenyl)-3a,4,5,6,7,7a-hexahydroisoindole-1,3-dione, C14H14FNO2, (I), and cis-2-(4-fluorophenyl)-3a,4,5,6,7,7a-hexahydroisoindoline-1,3-dione, C14H14FNO2, (III), and the open-chain amide acid rac-cis-2-[(3-fluorophenyl)carbamoyl]cyclohexane-1-carboxylic acid, C14H16FNO3, (II), are reported. Cyclic imides (I) and (III) are conformationally similar, with comparable ring rotations about the imide N-Car bond [the dihedral angles between the benzene ring and the five-membered isoindole ring are 55.40 (8)° for (I) and 51.83 (7)° for (III)]. There are no formal intermolecular hydrogen bonds involved in the crystal packing of either (I) or (III). With the acid (II), in which the meta-related F-atom substituent is rotationally disordered (0.784:0.216), the amide group lies slightly out of the benzene plane [the interplanar dihedral angle is 39.7 (1)°]. Intermolecular amide-carboxyl N-HO hydrogen-bonding interactions between centrosymmetrically related molecules form stacks extending down b, and these are linked across c by carboxyl-amide O-HO hydrogen bonds, giving two-dimensional layered structures which lie in the (011) plane. The structures reported here represent examples of compounds analogous to the phthalimides or phthalanilic acids and have little precedence in the crystallographic literature.
Resumo:
In this conceptual article, we extend earlier work on Open Innovation and Absorptive Capacity. We suggest that the literature on Absorptive Capacity does not place sufficient emphasis on distributed knowledge and learning or on the application of innovative knowledge. To accomplish physical transformations, organisations need specific Innovative Capacities that extend beyond knowledge management. Accessive Capacity is the ability to collect, sort and analyse knowledge from both internal and external sources. Adaptive Capacity is needed to ensure that new pieces of equipment are suitable for the organisation's own purposes even though they may have been originally developed for other uses. Integrative Capacity makes it possible for a new or modified piece of equipment to be fitted into an existing production process with a minimum of inessential and expensive adjustment elsewhere in the process. These Innovative Capacities are controlled and coordinated by Innovative Management Capacity, a higher-order dynamic capability.
Resumo:
The construction industry demands priority from all governments because it impacts economically and socially on all citizens. A number of recent studies have identified inefficiencies in the Australian construction industry by modelling the building process. A culture of reform supported by industry and government is now emerging in the industry – one in which alternate forms of project delivery are being trialed. The Australian Building and Construction Industry Action Agenda brought together industry and government to identify actions necessary to lift Australia’s innovative and knowledge creating capacity at the sector level. A central activity under this Action Agenda was dissemination of information relating to industry best practice initiatives in innovation, project delivery and the use of information technology. Government and industry identified project alliance contracting and more advanced information technology as means to increase efficiency in construction as part of a new innovative procurement environment.
Resumo:
The construction phase of building projects is often a crucial influencing factor in success or failure of projects. Project managers are believed to play a significant role in firms’ success and competitiveness. Therefore, it is important for firms to better understand the demands of managing projects and the competencies that project managers require for more effective project delivery. In a survey of building project managers in the state of Queensland, Australia, it was found that management and information management system are the top ranking competencies required by effective project managers. Furthermore, a significant number of respondents identified the site manager, construction manager and client’s representative as the three individuals whose close and regular contacts with project managers have the greatest influence on the project managers’ performance. Based on these findings, an intra-project workgroups model is proposed to help project managers facilitate more effective management of people and information on building projects.
Resumo:
The new competitive international business environment is characterised by constant change and uncertainty. This is particularly true in project-oriented industries such as construction where subcontracting and competitive tendering add new dimensions to an already uncertain working environment. Many management writers and practitioners argue that the changing business environment and the speed required to design, develop and market products and services will lead to increasing use of project management in the future. This means that project management skills will become a competitive weapon for those individuals and firms that properly develop them.