486 resultados para Onsager reaction field approximation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

All sound research commence with the selection of a research paradigm. The chosen research paradigm is significant in shaping the researcher’s perspectives of the world and it is a vital step in any study’s’ research design. There are different paradigms that IS researchers can choose from; amongst which the interpretive paradigm is growing in acceptance.. Though interpretive research has emerged as an important strand in Information Systems (IS), guidelines on how to conduct interpretive research and how to evaluate them have been scarce. Klein and Myers presented seven principles with examples for each from three case examples. While these principles are much valued, there is a lack of support for novice researchers on how to embed these principles in an overall research design, which could help with the aid of a detailed example that has done so. Thus, this paper aims to address this gap, and presents how Klein and Myers’s principles were applied within an example study that investigated shared services in the Malaysian Higher Education context. The example study adopted the interpretive paradigm as the most suited approach that fitted their research questions and goals. More details about the selection and adoption of the Klein and Myers’s guidelines in the context of the shared services research case study are presented in the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using electric-field-induced optical second-harmonic generation (EFISHG) measurement, we analyzed hysteresis behavior of capacitance-voltage (C-V) characteristics of IZO/polyterpenol (PT)/C₆₀/pentacene/Au diodes, where PT layer is actively working as a hole-transport electron-blocking layer. The EFISHG measurement verified the presence of interface accumulated charges in the diodes, and showed that a space charge electric field from accumulated excess electrons (holes) that remain at the PT/C₆₀ (C₆₀/pentacene) interface is responsible for the hysteresis loop observed in the C-V characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved electric field induced second harmonic generation technique was used to probe the carrier transients within double-layer pentacene-based MIM devices. Polyterpenol thin films fabricated from non-synthetic environmentally sustainable source were used as a blocking layer to assist in visualisation of single-species carrier transportation during charging and discharging under different bias conditions. Results demonstrated that carrier transients were comprised of charging on electrodes, followed by carrier injection and charging of the interface. Polyterpenol was demonstrated to be a sound blocking material and can therefore be effectively used for probing of double-layer devices using EFISHG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A non-synthetic polymer material, polyterpenol, was fabricated using a dry polymerization process namely RF plasma polymerization from an environmentally friendly monomer and its surface, optical and electrical properties investigated. Polyterpenol films were found to be transparent over the visible wavelength range, with a smooth surface with an average roughness of less than 0.4 nm and hardness of 0.4 GPa. The dielectric constant of 3.4 for polyterpenol was higher than that of the conventional polymer materials used in the organic electronic devices. The non-synthetic polymer material was then implemented as a surface modification of the gate insulator in field effect transistor (OFET) and the properties of the device were examined. In comparison to the similar device without the polymer insulating layer, the polyterpenol based OFET device showed significant improvements. The addition of the polyterpenol interlayer in the OFET shifted the threshold voltage significantly; + 20 V to -3 V. The presence of trapped charge was not observed in the polyterpenol interlayer. This assisted in the improvement of effective mobility from 0.012 to 0.021 cm 2/Vs. The switching property of the polyterpenol based OFET was also improved; 107 compared to 104. The results showed that the non-synthetic polyterpenol polymer film is a promising candidate of insulators in electronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose To explore the effect of small-aperture optics, designed to aid presbyopes by increasing ocular depth-of-focus, on measurements of the visual field. Methods Simple theoretical and ray-tracing models were used to predict the impact of different designs of small-aperture contact lenses or corneal inlays on the proportion of light passing through natural pupils of various diameters as a function of the direction in the visual field. The left eyes of five healthy volunteers were tested using three afocal, hand-painted opaque soft contact lenses (www.davidthomas.com). Two were opaque over a 10 mm diameter but had central clear circular apertures of 1.5 and 3.0 mm in diameter. The third had an annular opaque zone with inner and outer diameters of 1.5 and 4.0 mm, approximately simulating the geometry of the KAMRA inlay (www.acufocus.com). A fourth, clear lens was used for comparison purposes. Visual fields along the horizontal meridian were evaluated up to 50° eccentricity with static automated perimetry (Medmont M700, stimulus Goldmann-size III; www.medmont.com). Results According to ray-tracing, the two lenses with the circular apertures were expected to reduce the relative transmittance of the pupil to zero at specific field angles (around 60° for the conditions of the experimental measurements). In contrast, the annular stop had no effect on the absolute field but relative transmittance was reduced over the central area of the field, the exact effects depending upon the natural pupil diameter. Experimental results broadly agreed with these theoretical expectations. With the 1.5 and 3.0 mm pupils, only minor losses in sensitivity (around 2 dB) in comparison with the clear-lens case occurred across the central 10° radius of field. Beyond this angle, sensitivity losses increased, to reach about 7 dB at the edge of the measured field (50°). The field results with the annular stop showed at most only a slight loss in sensitivity (≤3 dB) across the measured field. Conclusion The present theoretical and experimental results support earlier clinical findings that KAMRA-type annular stops, unlike circular artificial pupils, have only minor effects on measurements of the visual field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inspired by high porosity, absorbency, wettability and hierarchical ordering on the micrometer and nanometer scale of cotton fabrics, a facile strategy is developed to coat visible light active metal nanostructures of copper and silver on cotton fabric substrates. The fabrication of nanostructured Ag and Cu onto interwoven threads of a cotton fabric by electroless deposition creates metal nanostructures that show a localized surface plasmon resonance (LSPR) effect. The micro/nanoscale hierarchical ordering of the cotton fabrics allows access to catalytically active sites to participate in heterogeneous catalysis with high efficiency. The ability of metals to absorb visible light through LSPR further enhances the catalytic reaction rates under photoexcitation conditions. Understanding the mode of electron transfer during visible light illumination in Ag@Cotton and Cu@Cotton through electrochemical measurements provides mechanistic evidence on the influence of light in promoting electron transfer during heterogeneous catalysis for the first time. The outcomes presented in this work will be helpful in designing new multifunctional fabrics with the ability to absorb visible light and thereby enhance light-activated catalytic processes.