621 resultados para Network mapping
Resumo:
While social media research has provided detailed cumulative analyses of selected social media platforms and content, especially Twitter, newer platforms, apps, and visual content have been less extensively studied so far. This paper proposes a methodology for studying Instagram activity, building on established methods for Twitter research by initially examining hashtags, as common structural features to both platforms. In doing so, we outline methodological challenges to studying Instagram, especially in comparison to Twitter. Finally, we address critical questions around ethics and privacy for social media users and researchers alike, setting out key considerations for future social media research.
Resumo:
Project work can involve multiple people from varying disciplines coming together to solve problems as a group. Large scale interactive displays are presenting new opportunities to support such interactions with interactive and semantically enabled cooperative work tools such as intelligent mind maps. In this paper, we present a novel digital, touch-enabled mind-mapping tool as a first step towards achieving such a vision. This first prototype allows an evaluation of the benefits of a digital environment for a task that would otherwise be performed on paper or flat interactive surfaces. Observations and surveys of 12 participants in 3 groups allowed the formulation of several recommendations for further research into: new methods for capturing text input on touch screens; inclusion of complex structures; multi-user environments and how users make the shift from single- user applications; and how best to navigate large screen real estate in a touch-enabled, co-present multi-user setting.
Resumo:
Identifying appropriate decision criteria and making optimal decisions in a structured way is a complex process. This paper presents an approach for doing this in the form of a hybrid Quality Function Deployment (QFD) and Cybernetic Analytic Network Process (CANP) model for project manager selection. This involves the use of QFD to translate the owner's project management expectations into selection criteria and the CANP to weight the expectations and selection criteria. The supermatrix approach then prioritises the candidates with respect to the overall decision-making goal. A case study is used to demonstrate the use of the model in selecting a renovation project manager. This involves the development of 18 selection criteria in response to the owner's three main expectations of time, cost and quality.
Resumo:
The rapid pace of social media means that our understanding of the way in which it facilitates the learning process continues to lag. The findings of a longitudinal study of an executive MBA cohort over the period of eight months in their use of the social media application is presented. Over time the ownership and use of the Yammer site shifted to become student driven and facilitated. The motivations behind the site’s use, perceived advantages and disadvantages and changes in usage patterns are documented. The case provides a useful insight into the way in which students used this technology to facilitate their learning goals and how patterns of behaviour changed in response to the changing needs of the cohort.
Resumo:
This paper presents a novel framework for the modelling of passenger facilitation in a complex environment. The research is motivated by the challenges in the airport complex system, where there are multiple stakeholders, differing operational objectives and complex interactions and interdependencies between different parts of the airport system. Traditional methods for airport terminal modelling do not explicitly address the need for understanding causal relationships in a dynamic environment. Additionally, existing Bayesian Network (BN) models, which provide a means for capturing causal relationships, only present a static snapshot of a system. A method to integrate a BN complex systems model with stochastic queuing theory is developed based on the properties of the Poisson and exponential distributions. The resultant Hybrid Queue-based Bayesian Network (HQBN) framework enables the simulation of arbitrary factors, their relationships, and their effects on passenger flow and vice versa. A case study implementation of the framework is demonstrated on the inbound passenger facilitation process at Brisbane International Airport. The predicted outputs of the model, in terms of cumulative passenger flow at intermediary and end points in the inbound process, are found to have an R2 goodness of fit of 0.9994 and 0.9982 respectively over a 10 h test period. The utility of the framework is demonstrated on a number of usage scenarios including causal analysis and ‘what-if’ analysis. This framework provides the ability to analyse and simulate a dynamic complex system, and can be applied to other socio-technical systems such as hospitals.
Resumo:
This paper suggests a supervisory control for storage units to provide load leveling in distribution networks. This approach coordinates storage units to charge during high generation and discharge during peak load times, while utilized to improve the network voltage profile indirectly. The aim of this control strategy is to establish power sharing on a pro rata basis for storage units. As a case study, a practical distribution network with 30 buses is simulated and the results are provided.
Resumo:
Large-scale integration of non-inertial generators such as wind farms will create frequency stability issues due to reduced system inertia. Inertia based frequency stability study is important to predict the performance of power system with increased level of renewables. This paper focuses on the impact large-scale wind penetration on frequency stability of the Australian Power Network. MATLAB simulink is used to develop a frequency based dynamic model utilizing the network data from a simplified 14-generator Australian power system. The loss of generation is modeled as the active power disturbance and minimum inertia required to maintain the frequency stability is determined for five-area power system.
Resumo:
The Hong Kong construction industry is currently facing ageing problem and labour shortage. There are opportunities for employing ethnic minority construction workers to join this hazardous industry. These ethnic minority workers are prone to accidents due to communication barriers. Safety communication is playing an important role for avoiding the accidents on construction sites. However, the ethnic minority workers are not very fluent in the local language and facing safety communication problems while working with local workers. Social network analysis (SNA), being an effective tool to identify the safety communication flow on the construction site, is used to attain the measures of safety communication like centrality, density and betweenness within the ethnic minorities and local workers, and to generate sociograms that visually represent communication pattern within the effective and ineffective safety networks. The aim of this paper is to present the application of SNA for improving the safety communication of ethnic minorities in the construction industry of Hong Kong. The paper provides the theoretical background of SNA approaches for the data collection and analysis using the software UCINET and NetDraw, to determine the predominant safety communication network structure and pattern of ethnic minorities on site.
Resumo:
This paper presents two key findings from a longitudinal study examining the dynamics of social networks during organisational change. One, the degree to which users seek new sources of information while adapting to the change. Two, the degree to which social networks display structural resilience when undergoing significant structural and technological change. Users reported an increase in advice ties post-implementation, however a proportionally higher increase in ties within their work group compared to the wider network was identified. The results also supported the supposition that while IT driven change may initially disrupt social networks some networks possess a high degree of resilience, with key players reasserting their original positions of influence following the initial phase of change related disruption.
Resumo:
This paper explores the concept that individual dancers leave traces in a choreographer’s body of work and similarly, that dancers carry forward residue of embodied choreographies into other working processes. This presentation will be grounded in a study of the multiple iterations of a programme of solo works commissioned in 2008 from choreographers John Jasperse, Jodi Melnick, Liz Roche and Rosemary Butcher and danced by the author. This includes an exploration of the development by John Jasperse of themes from his solo into the pieces PURE (2008) and Truth, Revised Histories, Wishful Thinking and Flat Out Lies (2009); an adaptation of the solo Business of the Bloom by Jodi Melnick in 2008 and a further adaptation of Business of the Bloom by this author in 2012. It will map some of the developments that occurred through a number of further performances over five years of the solo Shared Material on Dying by Liz Roche and the working process of the (uncompleted) solo Episodes of Flight by Rosemary Butcher. The purpose is to reflect back on authorship in dance, an art form in which lineages of influence can often be clearly observed. Normally, once a choreographic work is created and performed, it is archived through video recording, notation and/or reviews. The dancer is no longer called upon to represent the dance piece within the archive and thus her/his lived presence and experiential perspective disappears. The author will draw on the different traces still inhabiting her body as pathways towards understanding how choreographic movement circulates beyond this moment of performance. This will include the interrogation of ownership of choreographic movement, as once it becomes integrated in the body of the dancer, who owns the dance? Furthermore, certain dancers, through their individual physical characteristics and moving identities, can deeply influence the formation of choreographic signatures, a proposition that challenges the sole authorship role of the choreographer in dance production. This paper will be delivered in a presentation format that will bleed into movement demonstrations alongside video footage of the works and auto-ethnographic accounts of dancing experience. A further source of knowledge will be drawn from extracts of interviews with other dancers including Sara Rudner, Rebecca Hilton and Catherine Bennett.
Resumo:
We identified, mapped, and characterized a widespread area (gt;1,020 km2) of patterned ground in the Saginaw Lowlands of Michigan, a wet, flat plain composed of waterlain tills, lacustrine deposits, or both. The polygonal patterned ground is interpreted as a possible relict permafrost feature, formed in the Late Wisconsin when this area was proximal to the Laurentide ice sheet. Cold-air drainage off the ice sheet might have pooled in the Saginaw Lowlands, which sloped toward the ice margin, possibly creating widespread but short-lived permafrost on this glacial lake plain. The majority of the polygons occur between the Glacial Lake Warren strandline (~14.8 cal. ka) and the shoreline of Glacial Lake Elkton (~14.3 cal. ka), providing a relative age bracket for the patterned ground. Most of the polygons formed in dense, wet, silt loam soils on flat-lying sites and take the form of reticulate nets with polygon long axes of 150 to 160 m and short axes of 60 to 90 m. Interpolygon swales, often shown as dark curvilinears on aerial photographs, are typically slightly lower than are the polygon centers they bound. Some portions of these interpolygon swales are infilled with gravel-free, sandy loam sediments. The subtle morphology and sedimentological characteristics of the patterned ground in the Saginaw Lowlands suggest that thermokarst erosion, rather than ice-wedge replacement, was the dominant geomorphic process associated with the degradation of the Late-Wisconsin permafrost in the study area and, therefore, was primarily responsible for the soil patterns seen there today.
Resumo:
A precise representation of the spatial distribution of hydrophobicity, hydrophilicity and charges on the molecular surface of proteins is critical for the understanding of the interaction with small molecules and larger systems. The representation of hydrophobicity is rarely done at atom-level, as this property is generally assigned to residues. A new methodology for the derivation of atomic hydrophobicity from any amino acid-based hydrophobicity scale was used to derive 8 sets of atomic hydrophobicities, one of which was used to generate the molecular surfaces for 35 proteins with convex structures, 5 of which, i.e., lysozyme, ribonuclease, hemoglobin, albumin and IgG, have been analyzed in more detail. Sets of the molecular surfaces of the model proteins have been constructed using spherical probes with increasingly large radii, from 1.4 to 20 A˚, followed by the quantification of (i) the surface hydrophobicity; (ii) their respective molecular surface areas, i.e., total, hydrophilic and hydrophobic area; and (iii) their relative densities, i.e., divided by the total molecular area; or specific densities, i.e., divided by property-specific area. Compared with the amino acid-based formalism, the atom-level description reveals molecular surfaces which (i) present an approximately two times more hydrophilic areas; with (ii) less extended, but between 2 to 5 times more intense hydrophilic patches; and (iii) 3 to 20 times more extended hydrophobic areas. The hydrophobic areas are also approximately 2 times more hydrophobicity-intense. This, more pronounced "leopard skin"-like, design of the protein molecular surface has been confirmed by comparing the results for a restricted set of homologous proteins, i.e., hemoglobins diverging by only one residue (Trp37). These results suggest that the representation of hydrophobicity on the protein molecular surfaces at atom-level resolution, coupled with the probing of the molecular surface at different geometric resolutions, can capture processes that are otherwise obscured to the amino acid-based formalism.
Resumo:
Diagnosis of articular cartilage pathology in the early disease stages using current clinical diagnostic imaging modalities is challenging, particularly because there is often no visible change in the tissue surface and matrix content, such as proteoglycans (PG). In this study, we propose the use of near infrared (NIR) spectroscopy to spatially map PG content in articular cartilage. The relationship between NIR spectra and reference data (PG content) obtained from histology of normal and artificially induced PG-depleted cartilage samples was investigated using principal component (PC) and partial least squares (PLS) regression analyses. Significant correlation was obtained between both data (R2 = 91.40%, p<0.0001). The resulting correlation was used to predict PG content from spectra acquired from whole joint sample, this was then employed to spatially map this component of cartilage across the intact sample. We conclude that NIR spectroscopy is a feasible tool for evaluating cartilage contents and mapping their distribution across mammalian joint