521 resultados para Faults detect
Resumo:
Continuous monitoring of diesel engine performance is critical for early detection of fault developments in an engine before they materialize into a functional failure. Instantaneous crank angular speed (IAS) analysis is one of a few nonintrusive condition monitoring techniques that can be utilized for such a task. Furthermore, the technique is more suitable for mass industry deployments than other non-intrusive methods such as vibration and acoustic emission techniques due to the low instrumentation cost, smaller data size and robust signal clarity since IAS is not affected by the engine operation noise and noise from the surrounding environment. A combination of IAS and order analysis was employed in this experimental study and the major order component of the IAS spectrum was used for engine loading estimation and fault diagnosis of a four-stroke four-cylinder diesel engine. It was shown that IAS analysis can provide useful information about engine speed variation caused by changing piston momentum and crankshaft acceleration during the engine combustion process. It was also found that the major order component of the IAS spectra directly associated with the engine firing frequency (at twice the mean shaft rotating speed) can be utilized to estimate engine loading condition regardless of whether the engine is operating at healthy condition or with faults. The amplitude of this order component follows a distinctive exponential curve as the loading condition changes. A mathematical relationship was then established in the paper to estimate the engine power output based on the amplitude of this order component of the IAS spectrum. It was further illustrated that IAS technique can be employed for the detection of a simulated exhaust valve fault in this study.
Resumo:
We observe that MDS codes have interesting properties that can be used to construct ideal threshold schemes. These schemes permit the combiner to detect cheating, identify cheaters and recover the correct secret. The construction is later generalised so the resulting secret sharing is resistant against the Tompa-Woll cheating.
Resumo:
Catalytic probes are used for plasma diagnostics in order to quantify the density of neutral atoms. The probe response primarily depends on the probe material and its surface morphology. Here we report on the design, operation and modelling of the response of niobium pentoxide sensors with a flat and nanowire (NW) surfaces. These sensors were used to detect neutral oxygen atoms in the afterglow region of an inductively coupled rf discharge in oxygen. A very different response of the flat-surface and NW probes to the varying densities of oxygen atoms was explained by modelling heat conduction and taking into account the associated temperature gradients. It was found that the nanostructure probe can measure in a broader range than the flat oxide probe due to an increase in the surface to volume ratio, and the presence of nanostructures which act as a thermal barrier against sensor overheating. These results can be used for the development of the new generation of catalytic probes for gas/discharge diagnostics in a range of industrial and environmental applications.
Resumo:
This paper describes a novel vision based texture tracking method to guide autonomous vehicles in agricultural fields where the crop rows are challenging to detect. Existing methods require sufficient visual difference between the crop and soil for segmentation, or explicit knowledge of the structure of the crop rows. This method works by extracting and tracking the direction and lateral offset of the dominant parallel texture in a simulated overhead view of the scene and hence abstracts away crop-specific details such as colour, spacing and periodicity. The results demonstrate that the method is able to track crop rows across fields with extremely varied appearance during day and night. We demonstrate this method can autonomously guide a robot along the crop rows.
Resumo:
Database watermarking has received significant research attention in the current decade. Although, almost all watermarking models have been either irreversible (the original relation cannot be restored from the watermarked relation) and/or non-blind (requiring original relation to detect the watermark in watermarked relation). This model has several disadvantages over reversible and blind watermarking (requiring only watermarked relation and secret key from which the watermark is detected and original relation is restored) including inability to identify rightful owner in case of successful secondary watermarking, inability to revert the relation to original data set (required in high precision industries) and requirement to store unmarked relation at a secure secondary storage. To overcome these problems, we propose a watermarking scheme that is reversible as well as blind. We utilize difference expansion on integers to achieve reversibility. The major advantages provided by our scheme are reversibility to high quality original data set, rightful owner identification, resistance against secondary watermarking attacks, and no need to store original database at a secure secondary storage.
Resumo:
Detection of faults in roller element bearing is a topic widely discussed in the scientific field. Bearings diagnostics is usually performed by analyzing experimental signals, almost always vibration signals, measured during operation. A number of signal processing techniques have been proposed and applied to measured vibrations. The diagnostic effectiveness of the techniques depends on their capacities and on the environmental conditions (i.e. environmental noise). The current trend, especially from an industrial point of view, is to couple the prognostics to the diagnostics. The realization of a prognostic procedure require the definition of parameters able to describe the bearing condition during its operation. Monitoring the values of these parameters during time allows to define their trends depending on the progress of the wear. In this way, a relation between the variation of the selected parameters and the wear progress, useful for diagnostics and prognostics of bearings in real industrial applications, can be established. In this paper, a laboratory test-rig designed to perform endurance tests on roller element bearing is presented. Since the test-rig has operated for a short time, only some preliminary available results are discussed.
Resumo:
The preventive maintenance of traction equipment for Very High Speed Trains (VHST) nowadays is becoming very expensive owing to the high complexity and quality of these components that require high reliability. An efficient maintenance approach like the Condition-Based Maintenance (CBM) should be implemented to reduce the costs. For this purpose, an experimental full-scale test rig for the CBM of VHST traction equipment has been designed to investigate in detail failures in the main mechanical components of system, i.e. motor, bearings and gearbox. The paper describes the main characteristics of this unique test rig, able to reproduce accurately the train operating conditions, including the relative movements of the motor, the gearbox and the wheel axle. Gearbox, bearing seats and motor are equipped by accelerometers, thermocouples, torque meter and other sensors in different positions. The testing results give important information about the most suitable sensor position and type to be installed for each component and show the effectiveness of the techniques used for the signal analysis in order to identify faults of the gearbox and motor bearings.
Resumo:
Generally wireless sensor networks rely of many-to-one communication approach for data gathering. This approach is extremely susceptible to sinkhole attack, where an intruder attracts surrounding nodes with unfaithful routing information, and subsequently presents selective forwarding or change the data that carry through it. A sinkhole attack causes an important threat to sensor networks and it should be considered that the sensor nodes are mostly spread out in open areas and of weak computation and battery power. In order to detect the intruder in a sinkhole attack this paper suggests an algorithm which firstly finds a group of suspected nodes by analyzing the consistency of data. Then, the intruder is recognized efficiently in the group by checking the network flow information. The proposed algorithm's performance has been evaluated by using numerical analysis and simulations. Therefore, accuracy and efficiency of algorithm would be verified.
Resumo:
We aim to examine the miR-1288 expression in cancer cell lines and a large cohort of patients with colorectal cancer. Two colon cancer cell lines (SW480 and SW48) and one normal colonic epithelial cell line (FHC) were recruited. The miRNA expressions of miR-1288 were tested on these cell lines by using quantitative real-time polymerase chain reaction (qRT-PCR). An exogenous miR-1288 (mimic) was used to detect cell proliferation and cell cycle changes in SW480 using MTT calorimetric assay and flow cytometry, respectively. In addition, tissues from 122 patients with surgical resection of colorectum (82 adenocarcinomas, 20 adenomas, and 20 non-neoplastic tissues) were tested for miR-1288 expression by qRT-PCR. The colon cancer cell lines showed reduced expression of miR-1288 compared to normal colonic epithelial cell line. Over expression of miR-1288 in SW480 cell line showed increased cell proliferation and increased G2-M phase cells. In tissues, reduced miR-1288 expression was noted in majority of colorectal adenocarcinoma compared to colorectal adenoma and non-neoplastic tissues. Reduced or absent expression of miR-1288 was noted in 76% (n = 62/82) of the cancers. The expression levels of miR-1288 were higher in distal colorectal adenocarcinomas (P = 0.013) and in cancers of lower T staging (P = 0.033). To conclude, alternation of miR-1288 expression is important in the progression of colorectal cancer. The differential regulation of miR-1288 was found to be related to cancer location and pathological staging in colorectal cancers.
Resumo:
The ability to build high-fidelity 3D representations of the environment from sensor data is critical for autonomous robots. Multi-sensor data fusion allows for more complete and accurate representations. Furthermore, using distinct sensing modalities (i.e. sensors using a different physical process and/or operating at different electromagnetic frequencies) usually leads to more reliable perception, especially in challenging environments, as modalities may complement each other. However, they may react differently to certain materials or environmental conditions, leading to catastrophic fusion. In this paper, we propose a new method to reliably fuse data from multiple sensing modalities, including in situations where they detect different targets. We first compute distinct continuous surface representations for each sensing modality, with uncertainty, using Gaussian Process Implicit Surfaces (GPIS). Second, we perform a local consistency test between these representations, to separate consistent data (i.e. data corresponding to the detection of the same target by the sensors) from inconsistent data. The consistent data can then be fused together, using another GPIS process, and the rest of the data can be combined as appropriate. The approach is first validated using synthetic data. We then demonstrate its benefit using a mobile robot, equipped with a laser scanner and a radar, which operates in an outdoor environment in the presence of large clouds of airborne dust and smoke.
Resumo:
In this paper we demonstrate that existing cooperative spectrum sensing formulated for static primary users cannot accurately detect dynamic primary users regardless of the information fusion method. Performance error occurs as the sensing parameters calculated by the conventional detector result in sensing performance that violates the sensing requirements. Furthermore, the error is accumulated and compounded by the number of cooperating nodes. To address this limitation, we design and implement the duty cycle detection model for the context of cooperative spectrum sensing to accurately calculate the sensing parameters that satisfy the sensing requirements. We show that longer sensing duration is required to compensate for dynamic primary user traffic.
Resumo:
A novel gray-box neural network model (GBNNM), including multi-layer perception (MLP) neural network (NN) and integrators, is proposed for a model identification and fault estimation (MIFE) scheme. With the GBNNM, both the nonlinearity and dynamics of a class of nonlinear dynamic systems can be approximated. Unlike previous NN-based model identification methods, the GBNNM directly inherits system dynamics and separately models system nonlinearities. This model corresponds well with the object system and is easy to build. The GBNNM is embedded online as a normal model reference to obtain the quantitative residual between the object system output and the GBNNM output. This residual can accurately indicate the fault offset value, so it is suitable for differing fault severities. To further estimate the fault parameters (FPs), an improved extended state observer (ESO) using the same NNs (IESONN) from the GBNNM is proposed to avoid requiring the knowledge of ESO nonlinearity. Then, the proposed MIFE scheme is applied for reaction wheels (RW) in a satellite attitude control system (SACS). The scheme using the GBNNM is compared with other NNs in the same fault scenario, and several partial loss of effect (LOE) faults with different severities are considered to validate the effectiveness of the FP estimation and its superiority.
Resumo:
Aims The functional BDNF single nucleotide polymorphism (SNP) rs6265 has been associated with many disorders including schizophrenia and alcohol dependence. However, studies have been inconsistent, reporting both positive and negative associations. Comorbid alcohol dependence has a high prevalence in schizophrenia so we investigated the role of rs6265 in alcohol dependence in Australian populations of schizophrenia and alcohol dependent patients. Methods Two BDNF SNPs rs6265 and a nearby SNP rs7103411 were genotyped in a total of 848 individuals. These included a schizophrenia group (n = 157) and a second schizophrenia replication group (n = 235), an alcohol dependent group (n = 231) that had no schizophrenia diagnosis and a group of healthy controls (n = 225). Results Allelic association between rs7103411 and comorbid alcohol dependence was identified (P = 0.044) in the primary schizophrenia sample. In the replication study, we were able to detect allelic associations between both BDNF SNPs and comorbid alcohol dependence (rs6265, P = 0.006; rs7103411, P = 0.014). Moreover, we detected association between both SNPs and risk-taking behaviour after drinking (rs6265, P = 0.005; rs7103411, P = 0.009) and we detected strong association between both SNPs and alcohol dependence in males (rs6265, P = 0.009; rs7103411, P = 0.013) while females showed association with multiple behavioural measures reflecting repetitive alcohol consumption. Haplotype analysis revealed the rs6265-rs7103411 A/C haplotype is associated with comorbid alcohol dependence (P = 0.002). When these SNPs were tested in the non-schizophrenia alcohol dependent group we were unable to detect association. Conclusion We conclude that these BDNF SNPs play a role in development of comorbid alcohol dependence in schizophrenia while our data does not indicate that they play a role in alcohol dependent patients who do not have schizophrenia.
Resumo:
BACKGROUND: Effective diagnosis of malaria is a major component of case management. Rapid diagnostic tests (RDTs) based on Plasmodium falciparumhistidine-rich protein 2 (PfHRP2) are popular for diagnosis of this most virulent malaria infection. However, concerns have been raised about the longevity of the PfHRP2 antigenaemia following curative treatment in endemic regions. METHODS: A model of PfHRP2 production and decay was developed to mimic the kinetics of PfHRP2 antigenaemia during infections. Data from two human infection studies was used to fit the model, and to investigate PfHRP2 kinetics. Four malaria RDTs were assessed in the laboratory to determine the minimum detectable concentration of PfHRP2. RESULTS: Fitting of the PfHRP2 dynamics model indicated that in malaria naive hosts, P. falciparum parasites of the 3D7 strain produce 1.4 x 10(-)(1)(3) g of PfHRP2 per parasite per replication cycle. The four RDTs had minimum detection thresholds between 6.9 and 27.8 ng/mL. Combining these detection thresholds with the kinetics of PfHRP2, it is predicted that as few as 8 parasites/muL may be required to maintain a positive RDT in a chronic infection. CONCLUSIONS: The results of the model indicate that good quality PfHRP2-based RDTs should be able to detect parasites on the first day of symptoms, and that the persistence of the antigen will cause the tests to remain positive for at least seven days after treatment. The duration of a positive test result following curative treatment is dependent on the duration and density of parasitaemia prior to treatment and the presence and affinity of anti-PfHRP2 antibodies.
Resumo:
Rapid diagnostic tests (RDTs) represent important tools to diagnose malaria infection. To improve understanding of the variable performance of RDTs that detect the major target in Plasmodium falciparum, namely, histidine-rich protein 2 (HRP2), and to inform the design of better tests, we undertook detailed mapping of the epitopes recognized by eight HRP-specific monoclonal antibodies (MAbs). To investigate the geographic skewing of this polymorphic protein, we analyzed the distribution of these epitopes in parasites from geographically diverse areas. To identify an ideal amino acid motif for a MAb to target in HRP2 and in the related protein HRP3, we used a purpose-designed script to perform bioinformatic analysis of 448 distinct gene sequences from pfhrp2 and from 99 sequences from the closely related gene pfhrp3. The frequency and distribution of these motifs were also compared to the MAb epitopes. Heat stability testing of MAbs immobilized on nitrocellulose membranes was also performed. Results of these experiments enabled the identification of MAbs with the most desirable characteristics for inclusion in RDTs, including copy number and coverage of target epitopes, geographic skewing, heat stability, and match with the most abundant amino acid motifs identified. This study therefore informs the selection of MAbs to include in malaria RDTs as well as in the generation of improved MAbs that should improve the performance of HRP-detecting malaria RDTs.