594 resultados para Energy Integration
Resumo:
Internal heat sources may not only consume energy directly through their operation (e.g. lighting), but also contribute to building cooling or heating loads, which indirectly change building cooling and heating energy. Through the use of building simulation technique, this paper investigates the influence of building internal load densities on the energy and thermal performance of air conditioned office buildings in Australia. Case studies for air conditioned office buildings in major Australian capital cities are presented. It is found that with a decrease of internal load density in lighting and/or plug load, both the building cooling load and total energy use can be significantly reduced. Their effect on overheating hour reduction would be dependent on the local climate. In particular, it is found that if the building total internal load density is reduced from the base case of “medium” to “extra–low, the building total energy use under the future 2070 high scenario can be reduced by up to 89 to 120 kWh/m² per annum and the overheating problem could be completely avoided. It is suggested that the reduction in building internal load densities could be adopted as one of adaptation strategies for buildings in face of the future global warming.
Resumo:
Experimental work could be conducted in either laboratory or at field site. Generally, the laboratory experiments are carried out in an artificial setting and with a highly controlled environment. By contrast, the field experiments often take place in a natural setting, subject to the influences of many uncontrolled factors. Therefore, it is necessary to carefully assess the possible limitations and appropriateness of an experiment before embarking on it. In this paper, a case study of field monitoring of the energy performance of air conditioners is presented. Significant challenges facing the experimental work are described. Lessons learnt from this case study are also discussed. In particular, it was found that on-going analysis of the monitoring data and the correction of abnormal issues are two of the keys for a successful field test program. It was also shown that the installation of monitoring systems could have a significant impact on the accuracy of the data being collected. Before monitoring system was set up to collect monitoring data, it is recommended that an initial analysis of sample monitored data should be conducted to make sure that the monitoring data can achieve the expected precision. In the case where inevitable inherent errors were induced from the installation of field monitoring systems, appropriate remediation may need to be developed and implemented for the improved accuracy of the estimation of results. On-going analysis of monitoring data and correction of any abnormal issues would be the key to a successful field test program.
Co-optimisation of indoor environmental quality and energy consumption within urban office buildings
Resumo:
This study aimed to develop a multi-component model that can be used to maximise indoor environmental quality inside mechanically ventilated office buildings, while minimising energy usage. The integrated model, which was developed and validated from fieldwork data, was employed to assess the potential improvement of indoor air quality and energy saving under different ventilation conditions in typical air-conditioned office buildings in the subtropical city of Brisbane, Australia. When operating the ventilation system under predicted optimal conditions of indoor environmental quality and energy conservation and using outdoor air filtration, average indoor particle number (PN) concentration decreased by as much as 77%, while indoor CO2 concentration and energy consumption were not significantly different compared to the normal summer time operating conditions. Benefits of operating the system with this algorithm were most pronounced during the Brisbane’s mild winter. In terms of indoor air quality, average indoor PN and CO2 concentrations decreased by 48% and 24%, respectively, while potential energy savings due to free cooling went as high as 108% of the normal winter time operating conditions. The application of such a model to the operation of ventilation systems can help to significantly improve indoor air quality and energy conservation in air-conditioned office buildings.
Resumo:
The purpose of this article is to assess the viability of blanket sustainability policies, such as Building Rating Systems in achieving energy efficiency in university campus buildings. We analyzed the energy consumption trends of 10 LEED-certified buildings and 14 non-LEED certified buildings at a major university in the US. Energy Use Intensity (EUI) of the LEED buildings was significantly higher (EUILEED= 331.20 kBtu/sf/yr) than non-LEED buildings (EUInon-LEED=222.70 kBtu/sf/yr); however, the median EUI values were comparable (EUILEED= 172.64 and EUInon-LEED= 178.16). Because the distributions of EUI values were non-symmetrical in this dataset, both measures can be used for energy comparisons—this was also evident when EUI computations exclude outliers, EUILEED=171.82 and EUInon-LEED=195.41. Additional analyses were conducted to further explore the impact of LEED certification on university campus buildings energy performance. No statistically significant differences were observed between certified and non-certified buildings through a range of robust comparison criteria. These findings were then leveraged to devise strategies to achieve sustainable energy policies for university campus buildings and to identify potential issues with portfolio level building energy performance comparisons.
Resumo:
Given the shift toward energy efficient vehicles (EEVs) in recent years, it is important that the effects of this transition are properly examined. This paper investigates some of these effects by analyzing annual kilometers traveled (AKT) of private vehicle owners in Stockholm in 2008. The difference in emissions associated with EEV adoption is estimated, along with the effect of a congestion-pricing exemption for EEVs on vehicle usage. Propensity score matching is used to compare AKT rates of different vehicle owner groups based on the treatments of: EEV ownership and commuting across the cordon, controlling for confounding factors such as demographics. Through this procedure, rebound effects are identified, with some EEV owners found to have driven up to 12.2% further than non-EEV owners. Although some of these differences could be attributed to the congestion-pricing exemption, the results were not statistically significant. Overall, taking into account lifecycle emissions of each fuel type, average EEV emissions were 50.5% less than average non-EEV emissions, with this reduction in emissions offset by 2.0% due to rebound effects. Although it is important for policy-makers to consider the potential for unexpected negative effects in similar transitions, the overall benefit of greatly reduced emissions appears to outweigh any rebound effects present in this case study.
Resumo:
Introduction of dynamic pricing in present retail market, considerably affects customers with an increased cost of energy consumption. Therefore, customers are enforced to control their loads according to price variation. This paper proposes a new technique of Home Energy Management, which helps customers to minimize their cost of energy consumption by appropriately controlling their loads. Thermostatically Controllable Appliances (TCAs) such as air conditioner and water heater are focused in this study, as they consume more than 50% of the total household energy consumption. The control process includes stochastic dynamic programming, which incorporated uncertainties in price and demand variation. It leads to an accurate selection of appliance settings. It is followed by a real time control of selected appliances with its optimal settings. Temperature set points of TCAs are adjusted based on price droop which is a reflection of actual cost of energy consumption. Customer satisfaction is maintained within limits using constraint optimization. It is showed that considerable energy savings is achieved.
Resumo:
Available industrial energy meters offer high accuracy and reliability, but are typically expensive and low-bandwidth, making them poorly suited to multi-sensor data acquisition schemes and power quality analysis. An alternative measurement system is proposed in this paper that is highly modular, extensible and compact. To minimise cost, the device makes use of planar coreless PCB transformers to provide galvanic isolation for both power and data. Samples from multiple acquisition devices may be concentrated by a central processor before integration with existing host control systems. This paper focusses on the practical design and implementation of planar coreless PCB transformers to facilitate the module's isolated power, clock and data signal transfer. Calculations necessary to design coreless PCB transformers, and circuits designed for the transformer's practical application in the measurement module are presented. The designed transformer and each application circuit have been experimentally verified, with test data and conclusions made applicable to coreless PCB transformers in general.
Resumo:
Structural damage detection using modal strain energy (MSE) is one of the most efficient and reliable structural health monitoring techniques. However, some of the existing MSE methods have been validated for special types of structures such as beams or steel truss bridges which demands improving the available methods. The purpose of this study is to improve an efficient modal strain energy method to detect and quantify the damage in complex structures at early stage of formation. In this paper, a modal strain energy method was mathematically developed and then numerically applied to a fixed-end beam and a three-story frame including single and multiple damage scenarios in absence and presence of up to five per cent noise. For each damage scenario, all mode shapes and natural frequencies of intact structures and the first five mode shapes of assumed damaged structures were obtained using STRAND7. The derived mode shapes of each intact and damaged structure at any damage scenario were then separately used in the improved formulation using MATLAB to detect the location and quantify the severity of damage as compared to those obtained from previous method. It was found that the improved method is more accurate, efficient and convergent than its predecessors. The outcomes of this study can be safely and inexpensively used for structural health monitoring to minimize the loss of lives and property by identifying the unforeseen structural damages.
Resumo:
Integrating renewable energy into public space is becoming more common as a climate change solution. However, this approach is often guided by the environmental pillar of sustainability, with less focus on the economic and social pillars. The purpose of this paper is to examine this issue in the speculative renewable energy propositions for Freshkills Park in New York City submitted for the 2012 Land Art Generator Initiative (LAGI) competition. This paper first proposes an optimal electricity distribution (OED) framework in and around public spaces based on relevant ecology and energy theory (Odum’s fourth and fifth law of thermodynamics). This framework addresses social engagement related to public interaction, and economic engagement related to the estimated quantity of electricity produced, in conjunction with environmental engagement related to the embodied energy required to construct the renewable energy infrastructure. Next, the study uses the OED framework to analyse the top twenty-five projects submitted for the LAGI 2012 competition. The findings reveal an electricity distribution imbalance and suggest a lack of in-depth understanding about sustainable electricity distribution within public space design. The paper concludes with suggestions for future research.
Resumo:
As cities are rapidly developing new interventions against climate change, embedding renewable energy in public spaces is an important strategy. However, most interventions primarily include environmental sustainability while neglecting the social and economic interrelationships of electricity production. Although there is a growing interest in sustainability within environmental design and landscape architecture, public spaces are still awaiting viable energy-conscious design and assessment interventions. The purpose of this paper is to investigate this issue in a renowned public space—Ballast Point Park in Sydney—using a triple bottom line (TBL) case study approach. The emerging factors and relationships of each component of TBL, within the context of public open space, are identified and discussed. With specific focus on renewable energy distribution in and around Ballast Point Park, the paper concludes with a general design framework, which conceptualizes an optimal distribution of onsite electricity produced from renewable sources embedded in public open spaces.
A framework for understanding and generating integrated solutions for residential peak energy demand
Resumo:
Supplying peak energy demand in a cost effective, reliable manner is a critical focus for utilities internationally. Successfully addressing peak energy concerns requires understanding of all the factors that affect electricity demand especially at peak times. This paper is based on past attempts of proposing models designed to aid our understanding of the influences on residential peak energy demand in a systematic and comprehensive way. Our model has been developed through a group model building process as a systems framework of the problem situation to model the complexity within and between systems and indicate how changes in one element might flow on to others. It is comprised of themes (social, technical and change management options) networked together in a way that captures their influence and association with each other and also their influence, association and impact on appliance usage and residential peak energy demand. The real value of the model is in creating awareness, understanding and insight into the complexity of residential peak energy demand and in working with this complexity to identify and integrate the social, technical and change management option themes and their impact on appliance usage and residential energy demand at peak times.
Resumo:
Background Pharmacists are considered medication experts but are underutilized and exist mainly at the periphery of the Malaysian primary health care team. Private general practitioners (GPs) in Malaysia are granted rights under the Poison Act 1952 to prescribe and dispense medications at their primary care clinics. As most consumers obtain their medications from their GPs, community pharmacists’ involvement in ensuring safe use of medicines is limited. The integration of a pharmacist into private GP clinics has the potential to contribute to quality use of medicines. This study aims to explore health care consumers’ views on the integration of pharmacists within private GP clinics in Malaysia. Methods A purposive sample of health care consumers in Selangor and Kuala Lumpur, Malaysia, were invited to participate in focus groups and semi-structured interviews. Sessions were audio recorded and transcribed verbatim and thematically analyzed using NVivo 10. Results A total of 24 health care consumers participated in two focus groups and six semi-structured interviews. Four major themes were identified: 1) pharmacists’ role viewed mainly as supplying medications, 2) readiness to accept pharmacists in private GP clinics, 3) willingness to pay for pharmacy services, and 4) concerns about GPs’ resistance to pharmacist integration. Consumers felt that a pharmacist integrated into a private GP clinic could offer potential benefits such as to provide trustworthy information on the use and potential side effects of medications and screening for medication misadventure. The potential increase in costs passed on to consumers and GPs’ reluctance were perceived as barriers to integration. Conclusion This study provides insights into consumers’ perspectives on the roles of pharmacists within private GP clinics in Malaysia. Consumers generally supported pharmacist integration into private primary health care clinics. However, for pharmacists to expand their capacity in providing integrated and collaborative primary care services to consumers, barriers to pharmacist integration need to be addressed.
Resumo:
In classical fear conditioning a neutral conditioned stimulus (CS), is paired with an aversive unconditioned stimulus (US). The CS thereby acquires the capacity to elicit a fear response. This type of associative learning is thought to require co-activation of principal neurons in the lateral nucleus of the amygdala (LA) by two sets of synaptic inputs...
Resumo:
In classical fear conditioning a neutral conditioned stimulus (CS) such as a tone, is paired with an aversive unconditioned stimulus (US) such as a shock. The CS thereby acquires the capacity to elicit a fear response. This type of associative learning is thought to require co-activation of principle neurons in the lateral nucleus of the amygdala (LA) by two sets of synaptic inputs, a weak CS and a strong US...
Resumo:
Various types of layered double hydroxides, a type of clay, were synthesised. They were then electrochemically tested to determine whether the samples would be suitable to store energy as supercapacitors. A manganese aluminium layered double hydroxide was electrochemically tested for the first time and found to have a large capacitance.