590 resultados para 1995_12010900 Optics-1
Resumo:
This article describes the highly sensitive and selective determination of epinephrine (EP) using self-assembled monomolecular film (SAMF) of 1,8,15,22-tetraamino-phthalocyanatonickel(II) (4α-NiIITAPc) on Au electrode. The 4α-NiIITAPc SAMF modified electrode was prepared by spontaneous adsorption of 4α-NiIITAPc from dimethylformamide solution. The modified electrode oxidizes EP at less over potential with enhanced current response in contrast to the bare Au electrode. The standard heterogeneous rate constant (k°) for the oxidation of EP at 4α-NiIITAPc SAMF modified electrode was found to be 1.94×10−2 cm s−1 which was much higher than that at the bare Au electrode. Further, it was found that 4α-NiIITAPc SAMF modified electrode separates the voltammetric signals of ascorbic acid (AA) and EP with a peak separation of 250 mV. Using amperometric method the lowest detection limit of 50 nM of EP was achieved at SAMF modified electrode. Simultaneous amperometric determination of AA and EP was also achieved at the SAMF modified electrode. Common physiological interferents such as uric acid, glucose, urea and NaCl do not interfere within the potential window of EP oxidation. The present 4α-NiIITAPc SAMF modified electrode was also successfully applied to determine the concentration of EP in commercially available injection.
Resumo:
This paper describes the electrocatalytic oxidation of ascorbic acid (AA) in phosphate buffer solution by the immobilized citrate capped gold nanoparticles (AuNPs) on 1,6-hexanedithiol (HDT) modified Au electrode. X-ray photoelectron spectrum (XPS) of HDT suggests that it forms a monolayer on Au surface through one of the two single bondSH groups and the other single bondSH group is pointing away from the electrode surface. The free single bondSH groups of HDT were used to covalently attach colloidal AuNPs. The covalent attachment of AuNPs on HDT monolayer was confirmed from the observed characteristic carboxylate ion stretching modes of citrate attached with AuNPs in the infra-red reflection absorption spectrum (IRRAS) in addition to a higher reductive desorption charges obtained for AuNPs immobilized on HDT modified Au (Au/HDT/AuNPs) electrode in 0.1 M KOH when compared to HDT modified Au (Au/HDT) electrode. The electron transfer reaction of [Fe(CN)6]4−/3− was markedly hindered at the HDT modified Au (Au/HDT) electrode while it was restored with a peak separation of 74 mV after the immobilization of AuNPs on Au/HDT (Au/HDT/AuNPs) electrode indicating a good electronic communication between the immobilized AuNPs and the underlying bulk Au electrode through a HDT monolayer. The Cottrell slope obtained from the potential-step chronoamperometric measurements for the reduction of ferricyanide at Au/HDT/AuNPs was higher than that of bare Au electrode indicating the increased effective surface area of AuNPs modified electrode. The Au/HDT/AuNPs electrode exhibits excellent electrocatalytic activity towards the oxidation of ascorbic acid (AA) by enhancing the oxidation peak current to more than two times with a 210 mV negative shift in the oxidation potential when compared to a bare Au electrode. The standard heterogeneous electron transfer rate constant (ks) calculated for AA oxidation at Au/HDT/AuNPs electrode was 5.4 × 10−3 cm s−1. The oxidation peak of AA at Au/HDT/AuNPs electrode was highly stable upon repeated potential cycling. Linear calibration plot was obtained for AA over the concentration range of 1–110 μM with a correlation coefficient of 0.9950. The detection limit of AA was found to be 1 μM. The common physiological interferents such as glucose, oxalate ions and urea do not show any interference within the detection limit of AA. The selectivity of the AuNPs modified electrode was illustrated by the determination of AA in the presence of uric acid.
Resumo:
We studied the effect of rod–cone interactions on mesopic visual reaction time (RT). Rod and cone photoreceptor excitations were independently controlled using a four-primary photostimulator. It was observed that (1) lateral rod–cone interactions increase the cone-mediated RTs; (2) the rod–cone interactions are strongest when rod sensitivity is maximal in a dark surround, but weaker with increased rod activity in a light surround; and (3) the presence of a dark surround nonselectively increased the mean and variability of chromatic (+L-M, S-cone) and luminance (L+M+S) RTs independent of the level of rod activity. The results demonstrate that lateral rod–cone interactions must be considered when deriving mesopic luminous efficiency using RT.
Resumo:
Purpose: Astigmatism is an important refractive condition in children. However, the functional impact of uncorrected astigmatism in this population is not well established, particularly with regard to academic performance. This study investigated the impact of simulated bilateral astigmatism on academic-related tasks before and after sustained near work in children. Methods: Twenty visually normal children (mean age: 10.8 ± 0.7 years; 6 males and 14 females) completed a range of standardised academic-related tests with and without 1.50 D of simulated bilateral astigmatism (with both academic-related tests and the visual condition administered in a randomised order). The simulated astigmatism was induced using a positive cylindrical lens while maintaining a plano spherical equivalent. Performance was assessed before and after 20 minutes of sustained near work, during two separate testing sessions. Academic-related measures included a standardised reading test (the Neale Analysis of Reading Ability), visual information processing tests (Coding and Symbol Search subtests from the Wechsler Intelligence Scale for Children) and a reading-related eye movement test (the Developmental Eye Movement test). Each participant was systematically assigned either with-the-rule (WTR, axis 180°) or against-the-rule (ATR, axis 90°) simulated astigmatism to evaluate the influence of axis orientation on any decrements in performance. Results: Reading, visual information processing and reading-related eye movement performance were all significantly impaired by both simulated bilateral astigmatism (p<0.001) and sustained near work (p<0.001), however, there was no significant interaction between these factors (p>0.05). Simulated astigmatism led to a reduction of between 5% and 12% in performance across the academic-related outcome measures, but there was no significant effect of the axis (WTR or ATR) of astigmatism (p>0.05). Conclusion: Simulated bilateral astigmatism impaired children’s performance on a range of academic–related outcome measures irrespective of the orientation of the astigmatism. These findings have implications for the clinical management of non-amblyogenic levels of astigmatism in relation to academic performance in children. Correction of low to moderate levels of astigmatism may improve the functional performance of children in the classroom.
Resumo:
Purpose To investigate the effects of the relatively selective GABAAOr receptor antagonist (1,2,5,6-tetrahydropyridin-4-yl) methylphosphinic acid (TPMPA) on form-deprivation myopia (FDM) in guinea pigs. Methods A diffuser was applied monocularly to 30 guinea pigs from day 10 to 21. The animals were randomized to one of five treatment groups. The deprived eye received daily sub-conjunctival injections of 100 μl TPMPA at a concentration of (i) 0.03 %, ( ii) 0.3 %, or (iii) 1 %, a fourth group (iv) received saline injections, and another (v) no injections. The fellow eye was left untreated. An additional group received no treatment to either eye. Prior to and at the end of the treatment period, refraction and ocular biometry were performed. Results Visual deprivation produced relative myopia in all groups (treated versus untreated eyes, P < 0.05). The amount of myopia was significantly affected by the drug treatment (one-way ANOVA, P < 0.0001); myopia was less in deprived eyes receiving either 0.3 % or 1 % TPMPA (saline = −4.38 ± 0.57D, 0.3 % TPMPA = −3.00 ± 0.48D, P < 0.01; 1 % TPMPA = −0.88 ± 0.51D, P < 0.001). The degree of axial elongation was correspondingly less (saline = 0.13 ± 0.02 mm, 0.3 % TPMPA = 0.09 ± 0.01 mm, P < 0.01, 1 % TPMPA = 0.02 ± 0.01 mm, P < 0.001) as was the VC elongation (saline = 0.08 ± 0.01 mm, 0.3 % TPMPA = 0.05 ± 0.01 mm, P < 0.01, 1 % TPMPA = 0.01 ± 0.01 mm; P < 0.001). ACD and LT were not affected (one-way ANOVA, P > 0.05). One percent TPMPA was more effective at inhibiting myopia than 0.3 % (P < 0.01), and 0.03 % did not appreciably inhibit the myopia (0.03 % TPMPA versus saline, P > 0.05). Conclusions Sub-conjunctival injections of TPMPA inhibit FDM in guinea pig models in a dose-dependent manner.
Resumo:
Purpose To quantify the effects of driver age on night-time pedestrian conspicuity, and to determine whether individual differences in visual performance can predict drivers' ability to recognise pedestrians at night. Methods Participants were 32 visually normal drivers (20 younger: M = 24.4 years ± 6.4 years; 12 older: M = 72.0 years ± 5.0 years). Visual performance was measured in a laboratory-based testing session including visual acuity, contrast sensitivity, motion sensitivity and the useful field of view. Night-time pedestrian recognition distances were recorded while participants drove an instrumented vehicle along a closed road course at night; to increase the workload of drivers, auditory and visual distracter tasks were presented for some of the laps. Pedestrians walked in place, sideways to the oncoming vehicles, and wore either a standard high visibility reflective vest or reflective tape positioned on the movable joints (biological motion). Results Driver age and pedestrian clothing significantly (p < 0.05) affected the distance at which the drivers first responded to the pedestrians. Older drivers recognised pedestrians at approximately half the distance of the younger drivers and pedestrians were recognised more often and at longer distances when they wore a biological motion reflective clothing configuration than when they wore a reflective vest. Motion sensitivity was an independent predictor of pedestrian recognition distance, even when controlling for driver age. Conclusions The night-time pedestrian recognition capacity of older drivers was significantly worse than that of younger drivers. The distance at which drivers first recognised pedestrians at night was best predicted by a test of motion sensitivity.
Resumo:
The population is ageing. Globally, the number of older adults (aged 60 years or over) is expected to more than double, from 841 million people in 2013 to more than 2 billion in 2050.1 In light of the increasing size of the older adult population, there is a pressing need to better identify the nature of, and mechanisms underlying, age-related vision impairment and the functional impact it has on the performance of everyday activities in older adults. The content of this feature issue reflects the diversity of research currently being undertaken on the topic of the ageing visual system and the important visual challenges that this presents for our ageing patient population. The scope is broad and includes topics relating to three main related themes: 1) The treatment of age-related ocular disorders and diseases and their consequences, including presbyopia and AMD; 2) The impact of age-related visual changes on everyday activities in older people, including mobility, driving and falls, and; 3) The interaction of age-related visual impairments and other age-related impairments including hearing and cognitive changes.
Resumo:
Purpose: To provide a comprehensive overview of research examining the impact of astigmatism on clinical and functional measures of vision, the short and longer term adaptations to astigmatism that occur in the visual system, and the currently available clinical options for the management of patients with astigmatism. Recent findings: The presence of astigmatism can lead to substantial reductions in visual performance in a variety of clinical vision measures and functional visual tasks. Recent evidence demonstrates that astigmatic blur results in short-term adaptations in the visual system that appear to reduce the perceived impact of astigmatism on vision. In the longer term, uncorrected astigmatism in childhood can also significantly impact on visual development, resulting in amblyopia. Astigmatism is also associated with the development of spherical refractive errors. Although the clinical correction of small magnitudes of astigmatism is relatively straightforward, the precise, reliable correction of astigmatism (particularly high astigmatism) can be challenging. A wide variety of refractive corrections are now available for the patient with astigmatism, including spectacle, contact lens and surgical options. Conclusion: Astigmatism is one of the most common refractive errors managed in clinical ophthalmic practice. The significant visual and functional impacts of astigmatism emphasise the importance of its reliable clinical management. With continued improvements in ocular measurement techniques and developments in a range of different refractive correction technologies, the future promises the potential for more precise and comprehensive correction options for astigmatic patients.
Resumo:
Purpose Age-related changes in motion sensitivity have been found to relate to reductions in various indices of driving performance and safety. The aim of this study was to investigate the basis of this relationship in terms of determining which aspects of motion perception are most relevant to driving. Methods Participants included 61 regular drivers (age range 22–87 years). Visual performance was measured binocularly. Measures included visual acuity, contrast sensitivity and motion sensitivity assessed using four different approaches: (1) threshold minimum drift rate for a drifting Gabor patch, (2) Dmin from a random dot display, (3) threshold coherence from a random dot display, and (4) threshold drift rate for a second-order (contrast modulated) sinusoidal grating. Participants then completed the Hazard Perception Test (HPT) in which they were required to identify moving hazards in videos of real driving scenes, and also a Direction of Heading task (DOH) in which they identified deviations from normal lane keeping in brief videos of driving filmed from the interior of a vehicle. Results In bivariate correlation analyses, all motion sensitivity measures significantly declined with age. Motion coherence thresholds, and minimum drift rate threshold for the first-order stimulus (Gabor patch) both significantly predicted HPT performance even after controlling for age, visual acuity and contrast sensitivity. Bootstrap mediation analysis showed that individual differences in DOH accuracy partly explained these relationships, where those individuals with poorer motion sensitivity on the coherence and Gabor tests showed decreased ability to perceive deviations in motion in the driving videos, which related in turn to their ability to detect the moving hazards. Conclusions The ability to detect subtle movements in the driving environment (as determined by the DOH task) may be an important contributor to effective hazard perception, and is associated with age, and an individuals' performance on tests of motion sensitivity. The locus of the processing deficits appears to lie in first-order, rather than second-order motion pathways.
Resumo:
Purpose People with diabetes have accelerated age-related biometric ocular changes compared with people without diabetes. We determined the effect of Type 1 diabetes on amplitude of accommodation. Method There were 43 participants (33 ± 8 years) with type 1 diabetes and 32 (34 ± 8 years) age-balanced participants without diabetes. There was no significant difference in the mean equivalent refractive error and visual acuity between the two groups. Amplitude of accommodation was measured using two techniques: objective — by determining the accommodative response to a stimulus in a COAS-HD wavefront aberrometer (Wavefront Sciences), and subjective — with a Badal hand optometer (Rodenstock). The influences of age and diabetes duration (in years) on amplitude of accommodation were analyzed using multiple regression analysis. Results Across both groups, objective amplitude was less than subjective amplitude by 1.4 ± 1.2 D. People with diabetes had lower objective (2.7 ± 1.6 D) and subjective (4.0 ± 1.7 D) amplitudes than people without diabetes (objective 4.1 ± 2.1 D, subjective 5.6 ± 2.1 D). For objective amplitude and the whole group, the duration of diabetes contributed 57% of the variation as did age. For the objective amplitude and only the diabetes group this was 78%. For subjective amplitude, the corresponding proportions were 68% and 103%. Conclusions Both objective and subjective techniques showed lowered amplitude of accommodation in participants with type 1 diabetes when compared with age-matched controls. The loss correlated strongly with duration of diabetes. The results suggest that individuals with diabetes will experience presbyopia earlier in life than people without diabetes, possibly due to metabolic changes in the lens.
Resumo:
Purpose To investigate longitudinal changes of subbasal nerve plexus (SNP) morphology and its relationship with conventional measures of neuropathy in individuals with diabetes. Methods A cohort of 147 individuals with type 1 diabetes and 60 age-balanced controls underwent detailed assessment of clinical and metabolic factors, neurologic deficits, quantitative sensory testing, nerve conduction studies and corneal confocal microscopy at baseline and four subsequent annual visits. The SNP parameters included corneal nerve fiber density (CNFD), branch density (CNBD) and fiber length (CNFL) and were quantified using a fully-automated algorithm. Linear mixed models were fitted to examine the changes in corneal nerve parameters over time. Results At baseline, 27% of the participants had mild diabetic neuropathy. All SNP parameters were significantly lower in the neuropathy group compared to controls (P<0.05). Overall, 89% of participants examined at baseline also completed the final visit. There was no clinically significant change to health and metabolic parameters and neuropathy measures from baseline to the final visit. Linear mixed model revealed a significant linear decline of CNFD (annual change rate, -0.9 nerve/mm2, P=0.01) in the neuropathy group compared to controls, which was associated with age (β=-0.06, P=0.04) and duration of diabetes (β=-0.08, P=0.03). In the neuropathy group, absolute changes of CNBD and CNFL showed moderate correlations with peroneal conduction velocity and cold sensation threshold, respectively (rs, 0.38 and 0.40, P<0.05). Conclusion This study demonstrates dynamic small fiber damage at the SNP, thus providing justification for our ongoing efforts to establish corneal nerve morphology as an appropriate adjunct to conventional measures of DPN.
Resumo:
Improved glycemic control is the only treatment that has been shown to be effective for diabetic peripheral neuropathy in patients with type 1 diabetes (1). Continuous subcutaneous insulin infusion (CSII) is superior to multiple daily insulin injection (MDI) for reducing HbA1c and hypoglycemic events (2). Here, we have compared the benefits of CSII compared withMDI for neuropathy over 24months....
Resumo:
Purpose: To determine the effect of Type 1 diabetes (DM1) on amplitude of accommodation. Method: There were 43 participants (33 ± 8 years) with DM1 and 32 (34 ± 8 years) age-balanced controls. Amplitude was measured objectively with a COAS wavefront aberrometer and subjectively with a Badal hand optometer. Results: Across both groups, objective amplitude was less than subjective amplitude by 1.4 ± 1.2 D. People with diabetes had lower objective (2.7±1.6 D) and subjective (4.0±1.7 D) amplitudes than people without diabetes (objective 4.1±2.1 D, subjective 5.6±2.1 D). For the DM1 group, the objective and subjective multivariate linear regressions were 7.1 – 0.097Age – 0.076DiabDur (R2 0.51) and 9.1 –0.103Age – 0.106DiabDur (R2 0.63), respectively. Conclusion: Objective and subjective techniques showed lowered amplitude of accommodation in DM1 participants compared with age-matched controls. Loss was affected strongly by duration of diabetes. People with diabetes will experience presbyopia earlier in life than people without diabetes.
Resumo:
Techniques are presented for enhancing weak Raman scattering signals for rapid yet accurate substance detection. Novel surfaces that allow signal enhancement quantification are described as are eye-safe methodologies that maximize the stand-off Raman detection range.
Resumo:
Purpose: To estimate refractive indices used with the Lenstar biometer. Methods: Axial lengths of model eyes were determined using an IOLMaster biometer and a Lenstar; comparing these lengths gave an overall eye index for the Lenstar. Using the Lenstar Graphical User interface, we determined that boundaries between media could be manipulated so that there were opposite changes in optical pathlength on either side of the boundary and specified changes in distances determined the ratios of media indices. These ratios were combined with the overall eye index to estimate indices. Results: The IOLMaster and Lenstar produced axial length estimates to within ±0.01 mm. Estimations of group refractive indices were 1.340, 1.341, 1.415 and 1.354 for cornea, aqueous, lens and overall eye, respectively. The aqueous and lens indices, but not those for the cornea, are similar to schematic eye indices and reasonable lens indices. Conclusion: The Lenstar appears to use different refractive indices for different ocular media.