526 resultados para techniques: spectroscopic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gilalite is a copper silicate mineral with a general formula of Cu5Si6O17 · 7H2O. The mineral is often found in association with another copper silicate mineral, apachite, Cu9Si10O29 · 11H2O. Raman and infrared spectroscopy have been used to characterize the molecular structure of gilalite. The structure of the mineral shows disorder, which is reflected in the difficulty of obtaining quality Raman spectra. Raman spectroscopy clearly shows the absence of OH units in the gilalite structure. Intense Raman bands are observed at 1066, 1083, and 1160 cm−1. The Raman band at 853 cm−1 is assigned to the –SiO3 symmetrical stretching vibration and the low-intensity Raman bands at 914, 953, and 964 cm−1 may be ascribed to the antisymmetric SiO stretching vibrations. An intense Raman band at 673 cm−1 with a shoulder at 663 cm−1 is assigned to the ν4 Si-O-Si bending modes. Raman spectroscopy complemented with infrared spectroscopy enabled a better understanding of the molecular structure of gilalite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interactions between the anti-carcinogens, bendamustine (BDM) and dexamethasone (DXM), with bovine serum albumin (BSA) were investigated with the use of fluorescence and UV–vis spectroscopies under pseudo-physiological conditions (Tris–HCl buffer, pH 7.4). The static mechanism was responsible for the fluorescence quenching during the interactions; the binding formation constant of the BSA–BDM complex and the binding number were 5.14 × 105 L mol−1 and 1.0, respectively. Spectroscopic studies for the formation of BDM–BSA complex were interpreted with the use of multivariate curve resolution – alternating least squares (MCR–ALS), which supported the complex formation. The BSA samples treated with site markers (warfarin – site I and ibuprofen – site II) were reacted separately with BDM and DXM; while both anti-carcinogens bound to site I, the binding constants suggested that DXM formed a more stable complex. Relative concentration profiles and the fluorescence spectra associated with BDM, DXM and BSA, were recovered simultaneously from the full fluorescence excitation–emission data with the use of the parallel factor analysis (PARAFAC) method. The results confirmed that on addition of DXM to the BDM–BSA complex, the BDM was replaced and the DXM–BSA complex formed; free BDM was released. This finding may have consequences for the transport of these drugs during any anti-cancer treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bat researchers currently use a variety of techniques that transform echolocation calls into audible frequencies and allow the spectral content of a signal to be viewed and analyzed. All techniques have limitations and an understanding of how each works and the effect on the signal being analyzed are vital for correct interpretation. The 3 most commonly used techniques for transforming frequencies of a call are heterodyne, frequency division, and time expansion. Three techniques for viewing spectral content of a signal are zero-crossing, Fourier analysis, and instantaneous frequency analysis. It is important for bat researchers to be familiar with the advantages and disadvantages of each technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic resonance is a well-established tool for structural characterisation of porous media. Features of pore-space morphology can be inferred from NMR diffusion-diffraction plots or the time-dependence of the apparent diffusion coefficient. Diffusion NMR signal attenuation can be computed from the restricted diffusion propagator, which describes the distribution of diffusing particles for a given starting position and diffusion time. We present two techniques for efficient evaluation of restricted diffusion propagators for use in NMR porous-media characterisation. The first is the Lattice Path Count (LPC). Its physical essence is that the restricted diffusion propagator connecting points A and B in time t is proportional to the number of distinct length-t paths from A to B. By using a discrete lattice, the number of such paths can be counted exactly. The second technique is the Markov transition matrix (MTM). The matrix represents the probabilities of jumps between every pair of lattice nodes within a single timestep. The propagator for an arbitrary diffusion time can be calculated as the appropriate matrix power. For periodic geometries, the transition matrix needs to be defined only for a single unit cell. This makes MTM ideally suited for periodic systems. Both LPC and MTM are closely related to existing computational techniques: LPC, to combinatorial techniques; and MTM, to the Fokker-Planck master equation. The relationship between LPC, MTM and other computational techniques is briefly discussed in the paper. Both LPC and MTM perform favourably compared to Monte Carlo sampling, yielding highly accurate and almost noiseless restricted diffusion propagators. Initial tests indicate that their computational performance is comparable to that of finite element methods. Both LPC and MTM can be applied to complicated pore-space geometries with no analytic solution. We discuss the new methods in the context of diffusion propagator calculation in porous materials and model biological tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic difficulties arising from mild brain injury (TBI) are difficult to predict because the processes underlying changes after TBI are poorly understood. In mild brain injury the extent of neuropsychiatric and cognitive symptoms correspond poorly to overt tissue loss (Barth 1983; Liu 2010). Cellular, immune and hormonal cascades occurring after injury and continuing during the healing process may impact uninjured brain regions sensitive to the effects of physiological and emotional stress, which receive projections from the injury site. Changes in these most basic properties due to injury or disease have profound implications for virtually every aspect of brain function through disruption of neurotransmitter, neuroendocrine and metabolic systems. In order to screen for changes in transmitter and metabolic activity, in this study we developed Single voxel proton Magnetic Resonance Spectroscopy (1H-MRS) for use in both injured and control animals. We first evaluated if 1H-MRS could be used to evaluate in vivo, alterations in brain metabolism and catabolism of the prefrontal cortex, amygdala and ventral hippocampus in both control and injured animals after controlled cortical impact injury to the rat prefrontal cortex. We found that metabolite measurements for Myo-Inositol, Choline, creatine, Glutamate+Glutamine, and N-acetyl-acetate are attainable in deep brain structures in vivo in injured and controls rats. We next seek to evaluate longitudinally, in vivo, alterations in brain metabolism and catabolism of the prefrontal cortex, amygdala and ventral hippocampus during the first month after controlled cortical impact injury to the rat prefrontal cortex. These ongoing studies will provide data on the changes in transmitters and metabolites over time in injured and non-injured subjects. These studies address some of the fundamental questions about how mild brain injury has such diverse effects on overall brain health and function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-term measurements of particle number size distribution (PNSD) produce a very large number of observations and their analysis requires an efficient approach in order to produce results in the least possible time and with maximum accuracy. Clustering techniques are a family of sophisticated methods which have been recently employed to analyse PNSD data, however, very little information is available comparing the performance of different clustering techniques on PNSD data. This study aims to apply several clustering techniques (i.e. K-means, PAM, CLARA and SOM) to PNSD data, in order to identify and apply the optimum technique to PNSD data measured at 25 sites across Brisbane, Australia. A new method, based on the Generalised Additive Model (GAM) with a basis of penalised B-splines, was proposed to parameterise the PNSD data and the temporal weight of each cluster was also estimated using the GAM. In addition, each cluster was associated with its possible source based on the results of this parameterisation, together with the characteristics of each cluster. The performances of four clustering techniques were compared using the Dunn index and Silhouette width validation values and the K-means technique was found to have the highest performance, with five clusters being the optimum. Therefore, five clusters were found within the data using the K-means technique. The diurnal occurrence of each cluster was used together with other air quality parameters, temporal trends and the physical properties of each cluster, in order to attribute each cluster to its source and origin. The five clusters were attributed to three major sources and origins, including regional background particles, photochemically induced nucleated particles and vehicle generated particles. Overall, clustering was found to be an effective technique for attributing each particle size spectra to its source and the GAM was suitable to parameterise the PNSD data. These two techniques can help researchers immensely in analysing PNSD data for characterisation and source apportionment purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis examines and compares imaging methods used during the radiotherapy treatment of prostate cancer. The studies found that radiation therapists were able to localise and target the prostate consistently with planar imaging techniques and that the use of small gold markers in the prostate reduced the variation in prostate localisation when using volumetric imaging. It was concluded that larger safety margins are required when using volumetric imaging without gold markers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Railway capacity determination and expansion are very important topics. In prior research, the competition between different entities such as train services and train types, on different network corridors however have been ignored, poorly modelled, or else assumed to be static. In response, a comprehensive set of multi-objective models have been formulated in this article to perform a trade-off analysis. These models determine the total absolute capacity of railway networks as the most equitable solution according to a clearly defined set of competing objectives. The models also perform a sensitivity analysis of capacity with respect to those competing objectives. The models have been extensively tested on a case study and their significant worth is shown. The models were solved using a variety of techniques however an adaptive E constraint method was shown to be most superior. In order to identify only the best solution, a Simulated Annealing meta-heuristic was implemented and tested. However a linearization technique based upon separable programming was also developed and shown to be superior in terms of solution quality but far less in terms of computational time.