490 resultados para plant monitoring
Resumo:
This study evaluates the effectiveness and social implications of home monitoring of 31 infants at risk of sudden infant death syndrome (SIDS). Thirteen siblings of children dying of SIDS, nine near miss SIDS infants and nine preterm infants with apnoea persisting beyond 40 weeks post conceptual age were monitored from a mean age of 15 days to a mean of 10 months. Chest movement detection monitors were used in 27 and thoracic impedance monitors in four. Genuine apnoeic episodes were reported by 21 families, and 13 infants required resuscitation. Apnoeic episodes occurred in all nine preterm infants but in only five (38%) of the siblings of SIDS (P<0.05). Troublesome false alarms were a major problem occurring with 61% of the infants and were more common with the preterm infants than the siblings of SIDS. All but two couples stated that the monitor decreased anxiety and improved their quality of life. Most parents accepted that the social restrictions imposed by the monitor were part of the caring process but four couples were highly resentful of the changes imposed on their lifestyle. The monitors used were far from ideal with malfunction occurring in 17, necessitating replacement in six, repair in six and cessation of monitoring in three. The parents became ingenious in modifying the monitors to their own individual requirements Although none of these 31 ‘at risk’ infants died the study sample was far too small to conclude whether home monitoring prevented any cases of SIDS.
Resumo:
This paper addresses the following predictive business process monitoring problem: Given the execution trace of an ongoing case,and given a set of traces of historical (completed) cases, predict the most likely outcome of the ongoing case. In this context, a trace refers to a sequence of events with corresponding payloads, where a payload consists of a set of attribute-value pairs. Meanwhile, an outcome refers to a label associated to completed cases, like, for example, a label indicating that a given case completed “on time” (with respect to a given desired duration) or “late”, or a label indicating that a given case led to a customer complaint or not. The paper tackles this problem via a two-phased approach. In the first phase, prefixes of historical cases are encoded using complex symbolic sequences and clustered. In the second phase, a classifier is built for each of the clusters. To predict the outcome of an ongoing case at runtime given its (uncompleted) trace, we select the closest cluster(s) to the trace in question and apply the respective classifier(s), taking into account the Euclidean distance of the trace from the center of the clusters. We consider two families of clustering algorithms – hierarchical clustering and k-medoids – and use random forests for classification. The approach was evaluated on four real-life datasets.
Resumo:
PURPOSE: Female athletes, in response to intensive training, competition stress and a lean, athletic physique, are at increased risk of altered hypothalamic-pituitary ovarian (HPO) axis function associated with menstrual cycle disturbance and reduced secretion of the ovarian hormones estrogen and progesterone. Because there is evidence suggesting possible detrimental effects on skeletal health associated with deficiencies in these hormones, a suitable means to asses ovarian hormone concentrations in at risk athletes is needed. The aim of this study was to evaluate a simple, economical means to monitor the ovarian hormone production in athletes, in the setting of intensive training. METHODS: Subjects comprised 14 adolescent rowers, 12 lightweight rowers, and two groups of 10 matched control subjects. Ovarian function was monitored during the competition season by estimation of urinary excretion of estrone glucuronide (E1G) and pregnanediol glucuronide (PdG), enabling the menstrual cycles to be classified as ovulatory or anovulatory. RESULTS: Results indicated 35% and 75% of schoolgirl and lightweight rowers had anovulatory menstrual cycles, respectively. These findings were highlighted by significantly lower excretion of E1G and PdG during phases of intensive training in both the lightweight and schoolgirl rowers, compared with the control subjects. CONCLUSION: It was concluded that the urinary E1G and PdG assays were an effective means to assess the influence of intense training on ovarian hormone concentrations in at risk athletes. It is recommended that this technique be applied more widely as a means of early detection of athletes with low estrogen and progesterone levels, in an attempt to avoid detrimental influences on skeletal health.
Resumo:
The combination of dwindling petroleum reserves and population growth make the development of renewable energy and chemical resources more pressing than ever before. Plant biomass is the most abundant renewable source for energy and chemicals. Enzymes can selectively convert the polysaccharides in plant biomass into simple sugars which can then be upgraded to liquid fuels and platform chemicals using biological and/or chemical processes. Pretreatment is essential for efficient enzymatic saccharification of plant biomass and this article provides an overview of how organic solvent (organosolv) pretreatments affect the structure and chemistry of plant biomass, and how these changes enhance enzymatic saccharification. A comparison between organosolv pretreatments utilizing broadly different classes of solvents (i.e., low boiling point, high boiling point, and biphasic) is presented, with a focus on solvent recovery and formation of by-products. The reaction mechanisms that give rise to these by-products are investigated and strategies to minimize by-product formation are suggested. Finally, process simulations of organosolv pretreatments are compared and contrasted, and discussed in the context of an industrial-scale plant biomass to fermentable sugar process.
Resumo:
An overview of teaching and research activities in the area of plant anatomy at QUT is provided. The current status of teaching of technical skills in plant anatomy is discussed briefly. Examples of applications of plant anatomy to a diverse range of fields are provided, including the crossover between art and science.
Resumo:
Integrated exposure to polycyclic aromatic hydrocarbons (PAHs) can be assessed through monitoring of urinary mono-hydroxylated PAHs (OH-PAHs). The aim of this study was to provide the first assessment of exposure to PAHs in a large sample of the population in Queensland, Australia including exposure to infant (0-4. years). De-identified urine specimens, obtained from a pathology laboratory, were stratified by age and sex, and pooled (n. =. 24 pools of 100) and OH-PAHs were measured by gas chromatography-isotope dilution-tandem mass spectrometry. Geometric mean (GM) concentrations ranged from 30. ng/L (4-hydroxyphenanthrene) to 9221. ng/L (1-naphthol). GM of 1-hydroxypyrene, the most commonly used PAH exposure biomarker, was 142. ng/L. The concentrations of OH-PAHs found in this study are consistent with those in developed countries and lower than those in developing countries. We observed no association between sex and OH-PAH concentrations. However, we observed lower urinary concentrations of all OH-PAHs in samples from infants (0-4. years), children (5-14. years) and the elderly (>. 60. year old) compared with samples from other age groups (15-29, 30-44 and 45-59. years) which may be attributed to age-dependent behaviour-specific exposure sources.
Resumo:
The treatment of large segmental bone defects remains a significant clinical challenge. Due to limitations surrounding the use of bone grafts, tissue-engineered constructs for the repair of large bone defects could offer an alternative. Before translation of any newly developed tissue engineering (TE) approach to the clinic, efficacy of the treatment must be shown in a validated preclinical large animal model. Currently, biomechanical testing, histology, and microcomputed tomography are performed to assess the quality and quantity of the regenerated bone. However, in vivo monitoring of the progression of healing is seldom performed, which could reveal important information regarding time to restoration of mechanical function and acceleration of regeneration. Furthermore, since the mechanical environment is known to influence bone regeneration, and limb loading of the animals can poorly be controlled, characterizing activity and load history could provide the ability to explain variability in the acquired data sets and potentially outliers based on abnormal loading. Many approaches have been devised to monitor the progression of healing and characterize the mechanical environment in fracture healing studies. In this article, we review previous methods and share results of recent work of our group toward developing and implementing a comprehensive biomechanical monitoring system to study bone regeneration in preclinical TE studies.
Resumo:
Much of our understanding and management of ecological processes requires knowledge of the distribution and abundance of species. Reliable abundance or density estimates are essential for managing both threatened and invasive populations, yet are often challenging to obtain. Recent and emerging technological advances, particularly in unmanned aerial vehicles (UAVs), provide exciting opportunities to overcome these challenges in ecological surveillance. UAVs can provide automated, cost-effective surveillance and offer repeat surveys for pest incursions at an invasion front. They can capitalise on manoeuvrability and advanced imagery options to detect species that are cryptic due to behaviour, life-history or inaccessible habitat. UAVs may also cause less disturbance, in magnitude and duration, for sensitive fauna than other survey methods such as transect counting by humans or sniffer dogs. The surveillance approach depends upon the particular ecological context and the objective. For example, animal, plant and microbial target species differ in their movement, spread and observability. Lag-times may exist between a pest species presence at a site and its detectability, prompting a need for repeat surveys. Operationally, however, the frequency and coverage of UAV surveys may be limited by financial and other constraints, leading to errors in estimating species occurrence or density. We use simulation modelling to investigate how movement ecology should influence fine-scale decisions regarding ecological surveillance using UAVs. Movement and dispersal parameter choices allow contrasts between locally mobile but slow-dispersing populations, and species that are locally more static but invasive at the landscape scale. We find that low and slow UAV flights may offer the best monitoring strategy to predict local population densities in transects, but that the consequent reduction in overall area sampled may sacrifice the ability to reliably predict regional population density. Alternative flight plans may perform better, but this is also dependent on movement ecology and the magnitude of relative detection errors for different flight choices. Simulated investigations such as this will become increasingly useful to reveal how spatio-temporal extent and resolution of UAV monitoring should be adjusted to reduce observation errors and thus provide better population estimates, maximising the efficacy and efficiency of unmanned aerial surveys.
Resumo:
Early detection of (pre-)signs of ulceration on a diabetic foot is valuable for clinical practice. Hyperspectral imaging is a promising technique for detection and classification of such (pre-)signs. However, the number of the spectral bands should be limited to avoid overfitting, which is critical for pixel classification with hyperspectral image data. The goal was to design a detector/classifier based on spectral imaging (SI) with a small number of optical bandpass filters. The performance and stability of the design were also investigated. The selection of the bandpass filters boils down to a feature selection problem. A dataset was built, containing reflectance spectra of 227 skin spots from 64 patients, measured with a spectrometer. Each skin spot was annotated manually by clinicians as "healthy" or a specific (pre-)sign of ulceration. Statistical analysis on the data set showed the number of required filters is between 3 and 7, depending on additional constraints on the filter set. The stability analysis revealed that shot noise was the most critical factor affecting the classification performance. It indicated that this impact could be avoided in future SI systems with a camera sensor whose saturation level is higher than 106, or by postimage processing.
Resumo:
Symposium co-ordinated by The International Network for Food and Obesity/NCDs Research, Monitoring and Action Support (INFORMAS) Purpose Global monitoring of the price and affordability of foods, meals and diets is urgently needed. There are major methodological challenges in developing robust, cost-effective, standardized, and policy relevant tools, pertinent to nutrition, obesity, and diet-related non-communicable diseases and their inequalities. There is increasing pressure to take into account environmental sustainability. Changes in price differentials and affordability need to be comparable between and within countries and over time. Robust tools could provide baseline data for monitoring and evaluating structural, economic and social policies at the country/regional and household levels. INFORMAS offers one framework for consideration.
Resumo:
Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV), artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification.
Resumo:
Incursions of plant pests and diseases pose serious threats to food security, agricultural productivity and the natural environment. One of the challenges in confidently delimiting and eradicating incursions is how to choose from an arsenal of surveillance and quarantine approaches in order to best control multiple dispersal pathways. Anthropogenic spread (propagules carried on humans or transported on produce or equipment) can be controlled with quarantine measures, which in turn can vary in intensity. In contrast, environmental spread processes are more difficult to control, but often have a temporal signal (e.g. seasonality) which can introduce both challenges and opportunities for surveillance and control. This leads to complex decisions regarding when, where and how to search. Recent modelling investigations of surveillance performance have optimised the output of simulation models, and found that a risk-weighted randomised search can perform close to optimally. However, exactly how quarantine and surveillance strategies should change to reflect different dispersal modes remains largely unaddressed. Here we develop a spatial simulation model of a plant fungal-pathogen incursion into an agricultural region, and its subsequent surveillance and control. We include structural differences in dispersal via the interplay of biological, environmental and anthropogenic connectivity between host sites (farms). Our objective was to gain broad insights into the relative roles played by different spread modes in propagating an invasion, and how incorporating knowledge of these spread risks may improve approaches to quarantine restrictions and surveillance. We find that broad heuristic rules for quarantine restrictions fail to contain the pathogen due to residual connectivity between sites, but surveillance measures enable early detection and successfully lead to suppression of the pathogen in all farms. Alternative surveillance strategies attain similar levels of performance by incorporating environmental or anthropogenic dispersal risk in the prioritisation of sites. Our model provides the basis to develop essential insights into the effectiveness of different surveillance and quarantine decisions for fungal pathogen control. Parameterised for authentic settings it will aid our understanding of how the extent and resolution of interventions should suitably reflect the spatial structure of dispersal processes.
Resumo:
This thesis increased the researchers understanding of the relationship between operations and maintenance in underground longwall coal mines, using data from a Queensland underground coal mine. The thesis explores various relationships between recorded variables. Issues with human recorded data was uncovered, and results emphasised the significance of variables associated with conveyor operation to explain production.
Resumo:
Research in this thesis focussed on the improvement of agricultural crops in increasing water use efficiency that impacts global crop productivity. The study identified key genetic regulatory mechanisms that the resurrection plant Tripogon loliiformis utilises to tolerate desiccation. Due to the conserved nature of the pathways involved, this information can be transferred for the enhancement of drought tolerance and water use efficiency in agricultural crops. Specifically this study used high throughput sequencing, microscopy and plant transformation to further the understanding of post-transcriptional regulatory mechanisms. It was shown that T. loliiformis uses microRNAs to regulate pro-survival autophagy pathways to tolerate desiccation.
Resumo:
Hydraulic instabilities represent a critical problem for Francis and Kaplan turbines, reducing their useful life due to increase of fatigue on the components and cavitation phenomena. Whereas an exhaustive list of publications on computational fluid-dynamic models of hydraulic instability is available, the possibility of applying diagnostic techniques based on vibration measurements has not been investigated sufficiently, also because the appropriate sensors seldom equip hydro turbine units. The aim of this study is to fill this knowledge gap and to exploit fully, for this purpose, the potentiality of combining cyclostationary analysis tools, able to describe complex dynamics such as those of fluid-structure interactions, with order tracking procedures, allowing domain transformations and consequently the separation of synchronous and non-synchronous components. This paper will focus on experimental data obtained on a full-scale Kaplan turbine unit, operating in a real power plant, tackling the issues of adapting such diagnostic tools for the analysis of hydraulic instabilities and proposing techniques and methodologies for a highly automated condition monitoring system. © 2015 Elsevier Ltd.