516 resultados para dynamic traffic assignment
Resumo:
Injury as a result of road traffic crashes is one of the most significant public health problems in developing countries. It intersects with disability as a development issue because a substantial proportion of people injured in road traffic crashes experience disability, both short term and long term. While there have been significant steps towards better management of road safety globally, especially in developing countries, the implications for road safety policy and practice of disability due road traffic crashes is not fully appreciated. In particular, qualitative information on the lived experience people with a long term disability as a result of a road traffic crash can inform better road safety policy and practice, as demonstrated in a case study from Thailand. The benefits of better policies and practices are likely to accrue to a wide range of road users, and to contribute to the achievement of sustainable development.
Resumo:
The kaolinite (Kaol) intercalated with potassium acetate (Ac) was prepared and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetry. Molecular dynamic simulation was performed to investigate the structure of Kaol–Ac intercalation complex and the hydrogen bonds between Kaol and intercalated Ac andwater using INTERFACE forcefield. The acetate anions andwater arranged in a bilayer structure in the interlayer space of Kaol. The potassium cations distributed in the interlayer space and strongly coordinated with acetate anions aswell aswater rather than keyed into the ditrigonal holes of tetrahedral surface of Kaol. Strong hydrogen bonds formed between the hydrogen atoms of hydroxyl on the octahedral surface and oxygen atoms of both acetate anions and water. The acetate anions andwater also weakly bonded hydrogen to the silica tetrahedral surface through their hydrogen atoms with the oxygen atoms of silica tetrahedral surface.
Resumo:
This study examines the context of coordinated responses, triggers for coordinated responses, and preference for or choice of coordinating strategies in road traffic injury prevention at a local level in some OECD countries. This aim is achieved through a mixed-methodology. In this respect, 22 semi-structured interviews were conducted with road traffic injury prevention experts from five OECD countries. In addition, 31 professional road traffic injury prevention stakeholders from seven OECD nations completed a self-administered, online survey. It found that there was resource limitation and inter-dependence across actors within the context of road traffic injury prevention at a local level. Furthermore, this study unveiled the realization of resource-dependency as a trigger for coordinated responses at a local level. Moreover, the present examination has revealed two coordinating strategies favored by experts in road traffic injury prevention – i.e. self-organizing community groups, which are deemed to have a platform to deliver programs within communities, and the funding of community groups to forge partnerships. However, the present study did not appear to endorse other strategies such as the formalization of coordinated responses or a legal mandate to coordinate responses. In essence, this study appears to suggest a need to manage coordinated responses from an adaptive perspective with interactions across road traffic injury prevention programs being forged on a mutual understanding of inter-dependency arising out of resource scarcity. In fact, the role of legislation and top-down national models in local level management of coordinated responses is likely to be one of identifying opportunities to interact with self-organized community groups and fund partnership-based road traffic injury prevention events.
Resumo:
Despite the extent of works done on modelling port water collisions, not much research effort has been devoted to modelling collisions at port anchorages. This paper aims to fill this important gap in literature by applying the Navigation Traffic Conflict Technique (NTCT) for measuring the collision potentials in anchorages and for examining the factors contributing to collisions. Grounding on the principles of the NTCT, a collision potential measurement model and a collision potential prediction model were developed. These models were illustrated by using vessel movement data of the anchorages in Singapore port waters. Results showed that the measured collision potentials are in close agreement with those perceived by harbour pilots. Higher collision potentials were found in anchorages attached to shoreline and international fairways, but not at those attached to confined water. Higher operating speeds, larger numbers of isolated danger marks and day conditions were associated with reduction in the collision potentials.
Resumo:
Purpose To test the effectiveness of static and dynamic orthoses using them as an exclusive treatment for proximal interphalangeal (PIP) joint flexion contracture compared with other hand therapy conservative treatments described in the literature. Methods 60 patients who used orthoses were compared with a control group that received other hand therapy treatments. Clinical assessments were measured before the experiment and 3 months after and included active PIP joint extension and function. Results A significant improvement in the extension active range of motion at the PIP joint in the second measurement was found in both groups, but it was significantly greater in the experimental group. Improvement in function (Disabilities of the Arm, Shoulder, and Hand score) between the first and second assessment was similar in the control and experimental groups. Conclusions Using night progressive static and daily dynamic orthoses as an exclusive treatment during the proliferative phase led to significant improvements in the PIP joint active extension, but the improvement did not correlate with increased function as perceived by the patient.
Resumo:
Pharmacological MRI (phMRI) techniques can be used to monitor the neurophysiological effects of central nervous system (CNS) active drugs. In this study, we investigated whether dynamic susceptibility contrast (DSC) perfusion imaging employing the use of superparamagnetic iron oxide nanoparticles (Resovist) could be used to measure hemodynamic response to d-amphetamine challenge in human subjects at both 1.5 and 4 T. Significant changes in cerebral blood flow (CBF) were found in focal regions associated with the nigrostriatal circuit and mesolimbic and mesocortical dopaminergic pathways. More significant CBF responses were found at higher field strength, mainly within striatal structures. The results from this study indicate that DSC perfusion imaging using Resovist can be used to assess the efficacy of CNS-active drugs and may play a role in the development of novel psychiatric therapies at the preclinical level. © 2005 Wiley-Liss, Inc.
Resumo:
In recent years, rapid advances in information technology have led to various data collection systems which are enriching the sources of empirical data for use in transport systems. Currently, traffic data are collected through various sensors including loop detectors, probe vehicles, cell-phones, Bluetooth, video cameras, remote sensing and public transport smart cards. It has been argued that combining the complementary information from multiple sources will generally result in better accuracy, increased robustness and reduced ambiguity. Despite the fact that there have been substantial advances in data assimilation techniques to reconstruct and predict the traffic state from multiple data sources, such methods are generally data-driven and do not fully utilize the power of traffic models. Furthermore, the existing methods are still limited to freeway networks and are not yet applicable in the urban context due to the enhanced complexity of the flow behavior. The main traffic phenomena on urban links are generally caused by the boundary conditions at intersections, un-signalized or signalized, at which the switching of the traffic lights and the turning maneuvers of the road users lead to shock-wave phenomena that propagate upstream of the intersections. This paper develops a new model-based methodology to build up a real-time traffic prediction model for arterial corridors using data from multiple sources, particularly from loop detectors and partial observations from Bluetooth and GPS devices.
Resumo:
Origin-Destination matrices (ODM) estimation can benefits of the availability of sample trajectories which can be measured thanks to recent technologies. This paper focus on the case of transport networks where traffic counts are measured by magnetic loops and sample trajectories available. An example of such network is the city of Brisbane, where Bluetooth detectors are now operating. This additional data source is used to extend the classical ODM estimation to a link-specific ODM (LODM) one using a convex optimisation resolution that incorporates networks constraints as well. The proposed algorithm is assessed on a simulated network.
Resumo:
This project constructs a scheduling solution for the Emergency Department. The schedules are generated in real-time to adapt to new patient arrivals and changing conditions. An integrated scheduling formulation assigns patients to beds and treatment tasks to resources. The schedule efficiency is assessed using waiting time and total care time experienced by patients. The solution algorithm incorporates dispatch rules, meta-heuristics and a new extended disjunctive graph formulation which provide high quality solutions in a fast time-frame for real time decision support. This algorithm can be implemented in an electronic patient management system to improve patient flow in the Emergency Department.
Resumo:
This paper presents an unmanned aircraft system (UAS) that uses a probabilistic model for autonomous front-on environmental sensing or photography of a target. The system is based on low-cost and readily-available sensor systems in dynamic environments and with the general intent of improving the capabilities of dynamic waypoint-based navigation systems for a low-cost UAS. The behavioural dynamics of target movement for the design of a Kalman filter and Markov model-based prediction algorithm are included. Geometrical concepts and the Haversine formula are applied to the maximum likelihood case in order to make a prediction regarding a future state of a target, thus delivering a new waypoint for autonomous navigation. The results of the application to aerial filming with low-cost UAS are presented, achieving the desired goal of maintained front-on perspective without significant constraint to the route or pace of target movement.
Resumo:
The increase in data center dependent services has made energy optimization of data centers one of the most exigent challenges in today's Information Age. The necessity of green and energy-efficient measures is very high for reducing carbon footprint and exorbitant energy costs. However, inefficient application management of data centers results in high energy consumption and low resource utilization efficiency. Unfortunately, in most cases, deploying an energy-efficient application management solution inevitably degrades the resource utilization efficiency of the data centers. To address this problem, a Penalty-based Genetic Algorithm (GA) is presented in this paper to solve a defined profile-based application assignment problem whilst maintaining a trade-off between the power consumption performance and resource utilization performance. Case studies show that the penalty-based GA is highly scalable and provides 16% to 32% better solutions than a greedy algorithm.
Resumo:
BACKGROUND The workgroup of Traffic Psychology is concerned with the social, behavioral, and perceptual aspects that are associated with use and non-use of bicycle helmets, in their various forms and under various cycling conditions. OBJECTIVES The objectives of WG2 are to (1) share current knowledge among the people already working in the field, (2) suggest new ideas for research on and evaluation of the design of bicycle helmets, and (3) discuss options for funding of such research within the individual frameworks of the participants. Areas for research include 3.1. The patterns of use of helmets among different users: children, adults, and sports enthusiasts. 3.2. The use of helmets in different environments: rural roads, urban streets, and bike trails. 3.3. Concerns bicyclists have relative to their safety and convenience and the perceived impact of using helmets on comfort and convenience. 3.4. The benefit of helmets for enhancing visibility, and how variations in helmet design and colors affect daytime, nighttime, and dusktime visibility. 3.5. The role of helmets in the acceptance of city-wide pickup-and-drop-off bicycles. 3.6. The impact of helmets on visual search behaviour of bicyclists.
Resumo:
In an effort to understand the fundamental aspects of air quality in traffic tunnel environments, field campaigns were conducted to measure polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and other important pollutants within two traffic tunnels in Nam San (NS) and Hong Ji (HJ) in Korea in 2009 and 2010. The mean concentrations of ∑PCDD/Fs (in fg/m(3)) at the two tunnel sites were 1270 (± 880) and 1200 (± 810), respectively. These values were moderately lower than those measured at a non-tunnel urban background site (1350 (± 780) fg/m(3))--selected as a reference in this study. In addition, seasonal patterns of dioxin concentrations were clearly evident at the traffic tunnels like the urban reference site, showing higher levels during the winter (and spring) than the summer (and fall). The observed seasonal variations were driven by changes in the concentrations of ∑PCDF congeners, while ∑PCDD concentrations showed little seasonality. The results of our study suggest that there is no significant difference in source characteristics between the two investigated tunnel sites and urban location, although the role of gasoline and diesel fueled vehicles are considered as the major source in determining the PCDDs and PCDF levels in a tunnel environment. However, given the relative increase in other important ambient pollutant (e.g. PM10) concentrations over ∑PCDD/Fs in tunnel air (compared to urban background air), the balance of sources in tunnels is clearly different from those in urban air overall.
Resumo:
This paper investigates the platoon dispersion model that is part of the 2010 Highway Capacity Manual that is used for forecasting downstream traffic flows for analyzing both signalized and TWSC intersections. The paper focuses on the effect of platoon dispersion on the proportion of time blocked, the conflicting flow rate, and the capacity flow rate for the major street left turn movement at a TWSC intersection. The existing HCM 2010 methodology shows little effect on conflicting flow or capacity for various distances downstream from the signalized intersection. Two methods are suggested for computing the conflicting flow and capacity of minor stream movements at the TWSC intersection that have more desirable properties than the existing HCM method. Further, if the existing HCM method is retained, the results suggest that the upstream signals model be dropped from the HCM method for TWSC intersections.
Resumo:
Changes to the redox status of biological systems have been implicated in the pathogenesis of a wide variety of disorders including cancer, Ischemia-reperfusion (I/R) injury and neurodegeneration. In times of metabolic stress e.g. ischaemia/reperfusion, reactive oxygen species (ROS) production overwhelms the intrinsic antioxidant capacity of the cell, damaging vital cellular components. The ability to quantify ROS changes in vivo, is therefore essential to understanding their biological role. Here we evaluate the suitability of a novel reversible profluorescent probe containing a redox-sensitive nitroxide moiety (methyl ester tetraethylrhodamine nitroxide, ME-TRN), as an in vivo, real-time reporter of retinal oxidative status. The reversible nature of the probe's response offers the unique advantage of being able to monitor redox changes in both oxidizing and reducing directions in real time. After intravitreal administration of the ME-TRN probe, we induced ROS production in rat retina using an established model of complete, acute retinal ischaemia followed by reperfusion. After restoration of blood flow, retinas were imaged using a Micron III rodent fundus fluorescence imaging system, to quantify the redox-response of the probe. Fluorescent intensity declined during the first 60 min of reperfusion. The ROS-induced change in probe fluorescence was ameliorated with the retinal antioxidant, lutein. Fluorescence intensity in non-Ischemia eyes did not change significantly. This new probe and imaging technology provide a reversible and real-time response to oxidative changes and may allow the in vivo testing of antioxidant therapies of potential benefit to a range of diseases linked to oxidative stress